Введение
В Prolog ограничения CLP (FD) являются правильным выбором для решения таких задач планирования.
См. clpfd для получения дополнительной информации.
В этом случае я предлагаю использовать мощное ограничение global_cardinality/2
, чтобы ограничить число случаев каждого раунда, в зависимости от количества доступных судов. Мы можем использовать итеративное углубление , чтобы найти минимальное количество допустимых раундов.
Свободно доступных систем Prolog достаточно для удовлетворительного решения задачи. Системы коммерческого уровня будут работать в десятки раз быстрее.
Вариант 1: решение с SWI-Prolog
:- use_module(library(clpfd)).
tennis(N, Courts, Rows) :-
length(Rows, N),
maplist(same_length(Rows), Rows),
transpose(Rows, Rows),
Rows = [[_|First]|_],
chain(First, #<),
length(_, MaxRounds),
numlist(1, MaxRounds, Rounds),
pairs_keys_values(Pairs, Rounds, Counts),
Counts ins 0..Courts,
foldl(triangle, Rows, Vss, Dss, 0, _),
append(Vss, Vs),
global_cardinality(Vs, Pairs),
maplist(breaks, Dss),
labeling([ff], Vs).
triangle(Row, Vs, Ds, N0, N) :-
length(Prefix, N0),
append(Prefix, [-|Vs], Row),
append(Prefix, Vs, Ds),
N #= N0 + 1.
breaks([]).
breaks([P|Ps]) :- maplist(breaks_(P), Ps), breaks(Ps).
breaks_(P0, P) :- abs(P0-P) #> 1.
Пример запроса: 5 игроков на 2 кортах:
?- time(tennis(5, 2, Rows)), maplist(writeln, Rows).
% 827,838 inferences, 0.257 CPU in 0.270 seconds (95% CPU, 3223518 Lips)
[-,1,3,5,7]
[1,-,5,7,9]
[3,5,-,9,1]
[5,7,9,-,3]
[7,9,1,3,-]
Указанная задача, 6 игроков на 2 кортах , хорошо решена в течение 1 минуты:
?- time(tennis(6, 2, Rows)),
maplist(format("~t~w~3+~t~w~3+~t~w~3+~t~w~3+~t~w~3+~t~w~3+\n"), Rows).
% 6,675,665 inferences, 0.970 CPU in 0.977 seconds (99% CPU, 6884940 Lips)
- 1 3 5 7 10
1 - 6 9 11 3
3 6 - 11 9 1
5 9 11 - 2 7
7 11 9 2 - 5
10 3 1 7 5 -
Еще пример: 7 игроков на 5 кортах:
?- time(tennis(7, 5, Rows)),
maplist(format("~t~w~3+~t~w~3+~t~w~3+~t~w~3+~t~w~3+~t~w~3+~t~w~3+\n"), Rows).
% 125,581,090 inferences, 17.476 CPU in 18.208 seconds (96% CPU, 7185927 Lips)
- 1 3 5 7 9 11
1 - 5 3 11 13 9
3 5 - 9 1 7 13
5 3 9 - 13 11 7
7 11 1 13 - 5 3
9 13 7 11 5 - 1
11 9 13 7 3 1 -
Вариант 2: решение с помощью SICStus Prolog
Со следующими дополнительными определениями совместимости, та же самая программа также запускается в SICStus Prolog:
:- use_module(library(lists)).
:- use_module(library(between)).
:- op(700, xfx, ins).
Vs ins D :- maplist(in_(D), Vs).
in_(D, V) :- V in D.
chain([], _).
chain([L|Ls], Pred) :-
chain_(Ls, L, Pred).
chain_([], _, _).
chain_([L|Ls], Prev, Pred) :-
call(Pred, Prev, L),
chain_(Ls, L, Pred).
pairs_keys_values(Ps, Ks, Vs) :- keys_and_values(Ps, Ks, Vs).
foldl(Pred, Ls1, Ls2, Ls3, S0, S) :-
foldl_(Ls1, Ls2, Ls3, Pred, S0, S).
foldl_([], [], [], _, S, S).
foldl_([L1|Ls1], [L2|Ls2], [L3|Ls3], Pred, S0, S) :-
call(Pred, L1, L2, L3, S0, S1),
foldl_(Ls1, Ls2, Ls3, Pred, S1, S).
time(Goal) :-
statistics(runtime, [T0|_]),
call(Goal),
statistics(runtime, [T1|_]),
T #= T1 - T0,
format("% Runtime: ~Dms\n", [T]).
Основное отличие: SICStus, будучи Prolog коммерческого уровня, который поставляется с серьезной системой CLP (FD), на намного быстрее , чем SWI-Prolog в этом случае использования и других подобных ему.
Указанное задание, 6 игроков на 2 кортах:
?- time(tennis(6, 2, Rows)),
maplist(format("~t~w~3+~t~w~3+~t~w~3+~t~w~3+~t~w~3+~t~w~3+\n"), Rows).
% <b>Runtime: 34ms (!)</b>
- 1 3 5 7 10
1 - 6 11 9 3
3 6 - 9 11 1
5 11 9 - 2 7
7 9 11 2 - 5
10 3 1 7 5 -
Более крупный пример:
| ?- time(tennis(7, 5, Rows)),
maplist(format("~t~w~3+~t~w~3+~t~w~3+~t~w~3+~t~w~3+~t~w~3+~t~w~3+\n"), Rows).
% <b>Runtime: 884ms</b>
- 1 3 5 7 9 11
1 - 5 3 9 7 13
3 5 - 1 11 13 7
5 3 1 - 13 11 9
7 9 11 13 - 3 1
9 7 13 11 3 - 5
11 13 7 9 1 5 -
Заключительные замечания
В обеих системах global_cardinality/3
позволяет указывать параметры, которые изменяют степень распространения глобального ограничения мощности, обеспечивая более слабую и потенциально более эффективную фильтрацию. Выбор правильных опций для конкретного примера может иметь еще большее влияние, чем выбор системы Prolog.