Я пытаюсь воссоздать результаты, сообщенные в Уменьшение размерности данных с помощью нейронных сетей автоматического кодирования набора данных лица olivetti с адаптированной версией цифр MNIST matlabкод , но у меня возникли некоторые трудности.Кажется, что независимо от того, сколько я настраиваю на количество эпох, скоростей или импульсов, уложенные RBM входят в стадию тонкой настройки с большим количеством ошибок и, следовательно, не могут значительно улучшить на стадии тонкой настройки.Я также испытываю аналогичную проблему с другим вещественным набором данных.
Для первого уровня я использую RBM с меньшей скоростью обучения (как описано в статье) и с
negdata = poshidstates*vishid' + repmat(visbiases,numcases,1);
Я вполне уверен, что следую инструкциям, содержащимся в вспомогательном материале , но не могу исправить ошибки.
Есть ли что-то, что мне не хватает?Посмотрите код, который я использую для действительных RBM в видимых единицах ниже, и для всего глубокого обучения.Остальной код можно найти здесь .
rbmvislinear.m:
epsilonw = 0.001; % Learning rate for weights
epsilonvb = 0.001; % Learning rate for biases of visible units
epsilonhb = 0.001; % Learning rate for biases of hidden units
weightcost = 0.0002;
initialmomentum = 0.5;
finalmomentum = 0.9;
[numcases numdims numbatches]=size(batchdata);
if restart ==1,
restart=0;
epoch=1;
% Initializing symmetric weights and biases.
vishid = 0.1*randn(numdims, numhid);
hidbiases = zeros(1,numhid);
visbiases = zeros(1,numdims);
poshidprobs = zeros(numcases,numhid);
neghidprobs = zeros(numcases,numhid);
posprods = zeros(numdims,numhid);
negprods = zeros(numdims,numhid);
vishidinc = zeros(numdims,numhid);
hidbiasinc = zeros(1,numhid);
visbiasinc = zeros(1,numdims);
sigmainc = zeros(1,numhid);
batchposhidprobs=zeros(numcases,numhid,numbatches);
end
for epoch = epoch:maxepoch,
fprintf(1,'epoch %d\r',epoch);
errsum=0;
for batch = 1:numbatches,
if (mod(batch,100)==0)
fprintf(1,' %d ',batch);
end
%%%%%%%%% START POSITIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
data = batchdata(:,:,batch);
poshidprobs = 1./(1 + exp(-data*vishid - repmat(hidbiases,numcases,1)));
batchposhidprobs(:,:,batch)=poshidprobs;
posprods = data' * poshidprobs;
poshidact = sum(poshidprobs);
posvisact = sum(data);
%%%%%%%%% END OF POSITIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
poshidstates = poshidprobs > rand(numcases,numhid);
%%%%%%%%% START NEGATIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
negdata = poshidstates*vishid' + repmat(visbiases,numcases,1);% + randn(numcases,numdims) if not using mean
neghidprobs = 1./(1 + exp(-negdata*vishid - repmat(hidbiases,numcases,1)));
negprods = negdata'*neghidprobs;
neghidact = sum(neghidprobs);
negvisact = sum(negdata);
%%%%%%%%% END OF NEGATIVE PHASE %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
err= sum(sum( (data-negdata).^2 ));
errsum = err + errsum;
if epoch>5,
momentum=finalmomentum;
else
momentum=initialmomentum;
end;
%%%%%%%%% UPDATE WEIGHTS AND BIASES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
vishidinc = momentum*vishidinc + ...
epsilonw*( (posprods-negprods)/numcases - weightcost*vishid);
visbiasinc = momentum*visbiasinc + (epsilonvb/numcases)*(posvisact-negvisact);
hidbiasinc = momentum*hidbiasinc + (epsilonhb/numcases)*(poshidact-neghidact);
vishid = vishid + vishidinc;
visbiases = visbiases + visbiasinc;
hidbiases = hidbiases + hidbiasinc;
%%%%%%%%%%%%%%%% END OF UPDATES %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
end
fprintf(1, '\nepoch %4i error %f \n', epoch, errsum);
end
dofacedeepauto.m:
clear all
close all
maxepoch=200; %In the Science paper we use maxepoch=50, but it works just fine.
numhid=2000; numpen=1000; numpen2=500; numopen=30;
fprintf(1,'Pretraining a deep autoencoder. \n');
fprintf(1,'The Science paper used 50 epochs. This uses %3i \n', maxepoch);
load fdata
%makeFaceData;
[numcases numdims numbatches]=size(batchdata);
fprintf(1,'Pretraining Layer 1 with RBM: %d-%d \n',numdims,numhid);
restart=1;
rbmvislinear;
hidrecbiases=hidbiases;
save mnistvh vishid hidrecbiases visbiases;
maxepoch=50;
fprintf(1,'\nPretraining Layer 2 with RBM: %d-%d \n',numhid,numpen);
batchdata=batchposhidprobs;
numhid=numpen;
restart=1;
rbm;
hidpen=vishid; penrecbiases=hidbiases; hidgenbiases=visbiases;
save mnisthp hidpen penrecbiases hidgenbiases;
fprintf(1,'\nPretraining Layer 3 with RBM: %d-%d \n',numpen,numpen2);
batchdata=batchposhidprobs;
numhid=numpen2;
restart=1;
rbm;
hidpen2=vishid; penrecbiases2=hidbiases; hidgenbiases2=visbiases;
save mnisthp2 hidpen2 penrecbiases2 hidgenbiases2;
fprintf(1,'\nPretraining Layer 4 with RBM: %d-%d \n',numpen2,numopen);
batchdata=batchposhidprobs;
numhid=numopen;
restart=1;
rbmhidlinear;
hidtop=vishid; toprecbiases=hidbiases; topgenbiases=visbiases;
save mnistpo hidtop toprecbiases topgenbiases;
backpropface;
Спасибо заваше время