А как насчет старого доброго понимания списка?(Как уже упоминалось @Turksarama, это работает только для двух списков)
sum([x * y for x, y in zip(*lists)])
Тестирование в Python 3.6:
In [532]: import random
In [534]: x = [random.randint(0,100) for _ in range(100)]
In [535]: y = [random.randint(0,100) for _ in range(100)]
In [536]: lists = x, y
Использование списочных представлений
In [543]: %timeit(sum([x * y for x, y in zip(*lists)]))
8.73 µs ± 24.3 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
Обратите внимание, что«кортеж» понимает медленнее
In [537]: %timeit(sum(x * y for x, y in zip(*lists)))
10.5 µs ± 170 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
Использование map
In [539]: %timeit(sum(map(lambda xi, yi: xi * yi, x, y)))
12.3 µs ± 144 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
Использование functools.reduce
In [542]: %timeit(sum(functools.reduce(operator.mul, data) for data in zip(*lists)))
38.6 µs ± 330 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)