Плагин позднего редактирования / бесстыдный: Теперь он доступен (с гораздо большей функциональностью) как mpldatacursor
.Вызов mpldatacursor.datacursor()
включит его для всех исполнителей matplotlib (включая базовую поддержку z-значений в изображениях и т. Д.).
Насколько я знаю, он еще не реализован, но этоне слишком сложно написать что-то похожее:
import matplotlib.pyplot as plt
class DataCursor(object):
text_template = 'x: %0.2f\ny: %0.2f'
x, y = 0.0, 0.0
xoffset, yoffset = -20, 20
text_template = 'x: %0.2f\ny: %0.2f'
def __init__(self, ax):
self.ax = ax
self.annotation = ax.annotate(self.text_template,
xy=(self.x, self.y), xytext=(self.xoffset, self.yoffset),
textcoords='offset points', ha='right', va='bottom',
bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.5),
arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0')
)
self.annotation.set_visible(False)
def __call__(self, event):
self.event = event
# xdata, ydata = event.artist.get_data()
# self.x, self.y = xdata[event.ind], ydata[event.ind]
self.x, self.y = event.mouseevent.xdata, event.mouseevent.ydata
if self.x is not None:
self.annotation.xy = self.x, self.y
self.annotation.set_text(self.text_template % (self.x, self.y))
self.annotation.set_visible(True)
event.canvas.draw()
fig = plt.figure()
line, = plt.plot(range(10), 'ro-')
fig.canvas.mpl_connect('pick_event', DataCursor(plt.gca()))
line.set_picker(5) # Tolerance in points
Поскольку кажется, что по крайней мере несколько человек используют это, я добавил обновленную версию ниже.
Новая версия имеет более простое использование и намного больше документации (т.е., по крайней мере, чуть-чуть).
В основном вы будете использовать это так:
plt.figure()
plt.subplot(2,1,1)
line1, = plt.plot(range(10), 'ro-')
plt.subplot(2,1,2)
line2, = plt.plot(range(10), 'bo-')
DataCursor([line1, line2])
plt.show()
Основные различия заключаются в том, что a) нет необходимости вручную вызывать line.set_picker(...)
, b) нет необходимости вручную вызывать fig.canvas.mpl_connect
, и c) эта версия обрабатывает несколько осей и несколько цифр.
from matplotlib import cbook
class DataCursor(object):
"""A simple data cursor widget that displays the x,y location of a
matplotlib artist when it is selected."""
def __init__(self, artists, tolerance=5, offsets=(-20, 20),
template='x: %0.2f\ny: %0.2f', display_all=False):
"""Create the data cursor and connect it to the relevant figure.
"artists" is the matplotlib artist or sequence of artists that will be
selected.
"tolerance" is the radius (in points) that the mouse click must be
within to select the artist.
"offsets" is a tuple of (x,y) offsets in points from the selected
point to the displayed annotation box
"template" is the format string to be used. Note: For compatibility
with older versions of python, this uses the old-style (%)
formatting specification.
"display_all" controls whether more than one annotation box will
be shown if there are multiple axes. Only one will be shown
per-axis, regardless.
"""
self.template = template
self.offsets = offsets
self.display_all = display_all
if not cbook.iterable(artists):
artists = [artists]
self.artists = artists
self.axes = tuple(set(art.axes for art in self.artists))
self.figures = tuple(set(ax.figure for ax in self.axes))
self.annotations = {}
for ax in self.axes:
self.annotations[ax] = self.annotate(ax)
for artist in self.artists:
artist.set_picker(tolerance)
for fig in self.figures:
fig.canvas.mpl_connect('pick_event', self)
def annotate(self, ax):
"""Draws and hides the annotation box for the given axis "ax"."""
annotation = ax.annotate(self.template, xy=(0, 0), ha='right',
xytext=self.offsets, textcoords='offset points', va='bottom',
bbox=dict(boxstyle='round,pad=0.5', fc='yellow', alpha=0.5),
arrowprops=dict(arrowstyle='->', connectionstyle='arc3,rad=0')
)
annotation.set_visible(False)
return annotation
def __call__(self, event):
"""Intended to be called through "mpl_connect"."""
# Rather than trying to interpolate, just display the clicked coords
# This will only be called if it's within "tolerance", anyway.
x, y = event.mouseevent.xdata, event.mouseevent.ydata
annotation = self.annotations[event.artist.axes]
if x is not None:
if not self.display_all:
# Hide any other annotation boxes...
for ann in self.annotations.values():
ann.set_visible(False)
# Update the annotation in the current axis..
annotation.xy = x, y
annotation.set_text(self.template % (x, y))
annotation.set_visible(True)
event.canvas.draw()
if __name__ == '__main__':
import matplotlib.pyplot as plt
plt.figure()
plt.subplot(2,1,1)
line1, = plt.plot(range(10), 'ro-')
plt.subplot(2,1,2)
line2, = plt.plot(range(10), 'bo-')
DataCursor([line1, line2])
plt.show()