Для такого типа проблем пакет plyr действительно феноменален.Вот некоторый код, который дает вам то, что вы хотите, по сути, в одной строке кода и небольшой вспомогательной функции.
library(plyr)
library(zoo)
library(pwt)
# First recreate dataset, using package pwt
data(pwt6.3)
pwt <- pwt6.3[
pwt6.3$country %in% c("Argentina", "Venezuela"),
c("country", "isocode", "year", "pop", "ci", "rgdpch")
]
# Use rollmean() in zoo as basis for defining a rolling 5-period rolling mean
rollmean5 <- function(x){
rollmean(x, 5)
}
# Use ddply() in plyr package to create rolling average per country
pwt.ma <- ddply(pwt, .(country), numcolwise(rollmean5))
Вот вывод из этого:
> head(pwt, 10)
country isocode year pop ci rgdpch
ARG-1950 Argentina ARG 1950 17150.34 13.29214 7736.338
ARG-1951 Argentina ARG 1951 17517.34 18.44502 8004.031
ARG-1952 Argentina ARG 1952 17876.96 17.76067 7372.721
ARG-1953 Argentina ARG 1953 18230.82 18.36526 7543.169
ARG-1954 Argentina ARG 1954 18580.56 16.98211 7661.550
ARG-1955 Argentina ARG 1955 18927.82 17.48891 8072.900
ARG-1956 Argentina ARG 1956 19271.51 15.90776 8098.133
ARG-1957 Argentina ARG 1957 19610.54 17.02845 8299.749
ARG-1958 Argentina ARG 1958 19946.54 17.54160 8714.951
ARG-1959 Argentina ARG 1959 20281.15 16.13731 8125.515
> head(pwt.ma)
country year pop ci rgdpch
1 Argentina 1952 17871.20 16.96904 7663.562
2 Argentina 1953 18226.70 17.80839 7730.874
3 Argentina 1954 18577.53 17.30094 7749.694
4 Argentina 1955 18924.25 17.15450 7935.100
5 Argentina 1956 19267.39 16.98977 8169.456
6 Argentina 1957 19607.51 16.82080 8262.250
Обратите внимание, чтоrollmean () по умолчанию вычисляет центрированное скользящее среднее.Вы можете изменить это поведение, чтобы получить левое или правое скользящее среднее, передав этот параметр вспомогательной функции.
РЕДАКТИРОВАТЬ:
@ Joris Meys мягко указал, что вына самом деле может быть после среднего за пятилетки.
Вот модифицированный код для этого:
pwt$period <- cut(pwt$year, seq(1900, 2100, 5))
pwt.ma <- ddply(pwt, .(country, period), numcolwise(mean))
pwt.ma
И вывод:
> pwt.ma
country period year pop ci rgdpch
1 Argentina (1945,1950] 1950.0 17150.336 13.29214 7736.338
2 Argentina (1950,1955] 1953.0 18226.699 17.80839 7730.874
3 Argentina (1955,1960] 1958.0 19945.149 17.42693 8410.610
4 Argentina (1960,1965] 1963.0 21616.623 19.09067 9000.918
5 Argentina (1965,1970] 1968.0 23273.736 18.89005 10202.665
6 Argentina (1970,1975] 1973.0 25216.339 19.70203 11348.321
7 Argentina (1975,1980] 1978.0 27445.430 23.34439 11907.939
8 Argentina (1980,1985] 1983.0 29774.778 17.58909 10987.538
9 Argentina (1985,1990] 1988.0 32095.227 15.17531 10313.375
10 Argentina (1990,1995] 1993.0 34399.829 17.96758 11221.807
11 Argentina (1995,2000] 1998.0 36512.422 19.03551 12652.849
12 Argentina (2000,2005] 2003.0 38390.719 15.22084 12308.493
13 Argentina (2005,2010] 2006.5 39831.625 21.11783 14885.227
14 Venezuela (1945,1950] 1950.0 5009.006 41.07972 7067.947
15 Venezuela (1950,1955] 1953.0 5684.009 44.60849 8132.041
16 Venezuela (1955,1960] 1958.0 6988.078 37.87946 9468.001
17 Venezuela (1960,1965] 1963.0 8451.073 26.93877 9958.935
18 Venezuela (1965,1970] 1968.0 10056.910 28.66512 11083.242
19 Venezuela (1970,1975] 1973.0 11903.185 32.02671 12862.966
20 Venezuela (1975,1980] 1978.0 13927.882 36.35687 13530.556
21 Venezuela (1980,1985] 1983.0 16082.694 22.21093 10762.718
22 Venezuela (1985,1990] 1988.0 18382.964 19.48447 10376.123
23 Venezuela (1990,1995] 1993.0 20680.645 19.82371 10988.096
24 Venezuela (1995,2000] 1998.0 22739.062 20.93509 10837.580
25 Venezuela (2000,2005] 2003.0 24550.973 17.33936 10085.322
26 Venezuela (2005,2010] 2006.5 25832.495 24.35465 11790.497