Phi= ArcTan[ Sqrt[4 * R^2 - d^2] /d ]
HTH!
Edit
For two different radii:
Simplifying a little:
Phi= ArcTan[Sqrt[-d^4 -(R1^2 - R2^2)^2 + 2*d^2*(R1^2 + R2^2)]/(d^2 +R1^2 -R2^2)]
Edit
If you want the angle viewed from the other circle center, just exchange R1 by R2 in the last equation.
Here is a sample implementation in Mathematica:
f[center1_, d_, R1_, R2_] := Module[{Phi, Theta},
Phi= ArcTan[Sqrt[-d^4-(R1^2-R2^2)^2 + 2*d^2*(R1^2 + R2^2)]/(d^2 +R1^2 -R2^2)]
Theta=ArcTan[Sqrt[-d^4-(R1^2-R2^2)^2 + 2*d^2*(R1^2 + R2^2)]/(d^2 -R1^2 +R2^2)]
{Circle[{center1, 0}, R1, {2 Pi - Phi, Phi}],
Circle[{d, 0}, R2, {Pi - Theta, -Pi + Theta}]}
];
Graphics[f[0, 1.5, 1, 1]]
Graphics[f[0, 1.5, 1, 3/4]]
И ...
ImageMultiply[
Binarize@FillingTransform[#],
ImageResize[Import@
"http://i305.photobucket.com/albums/nn235/greeneyedgirlox/blondebabybunny.jpg",
ImageDimensions@#]] &@
Rasterize@Graphics[f[0, 1.5, 1, 1], Background -> Black]
:)