Обновление: (почти) полностью векторизованная версия ниже в "new_function2" ...
Я добавлю комментарии, чтобы немного объяснить вещи.
Это дает ~ 50-кратное ускорение, и большее ускорение возможно, если у вас все в порядке с выводом в виде пустых массивов вместо списков.Как есть:
In [86]: %timeit new_function2(close, volume, INTERVAL_LENGTH)
1 loops, best of 3: 1.15 s per loop
Вы можете заменить свой внутренний цикл вызовом np.cumsum () ... Смотрите мою функцию "new_function" ниже.Это дает значительное ускорение ...
In [61]: %timeit new_function(close, volume, INTERVAL_LENGTH)
1 loops, best of 3: 15.7 s per loop
против
In [62]: %timeit old_function(close, volume, INTERVAL_LENGTH)
1 loops, best of 3: 53.1 s per loop
Должна быть возможность векторизации всей вещи и избежание циклов, хотя ... Дайте мне минутуи я посмотрю, что я могу сделать ...
import numpy as np
ARRAY_LENGTH = 500000
INTERVAL_LENGTH = 15
close = np.arange(ARRAY_LENGTH, dtype=np.float)
volume = np.arange(ARRAY_LENGTH, dtype=np.float)
def old_function(close, volume, INTERVAL_LENGTH):
results = []
for i in xrange(len(close) - INTERVAL_LENGTH):
for j in xrange(i+1, i+INTERVAL_LENGTH):
ret = close[j] / close[i]
vol = sum( volume[i+1:j+1] )
if (ret > 1.0001) and (ret < 1.5) and (vol > 100):
results.append( (i, j, ret, vol) )
return results
def new_function(close, volume, INTERVAL_LENGTH):
results = []
for i in xrange(close.size - INTERVAL_LENGTH):
vol = volume[i+1:i+INTERVAL_LENGTH].cumsum()
ret = close[i+1:i+INTERVAL_LENGTH] / close[i]
filter = (ret > 1.0001) & (ret < 1.5) & (vol > 100)
j = np.arange(i+1, i+INTERVAL_LENGTH)[filter]
tmp_results = zip(j.size * [i], j, ret[filter], vol[filter])
results.extend(tmp_results)
return results
def new_function2(close, volume, INTERVAL_LENGTH):
vol, ret = [], []
I, J = [], []
for k in xrange(1, INTERVAL_LENGTH):
start = k
end = volume.size - INTERVAL_LENGTH + k
vol.append(volume[start:end])
ret.append(close[start:end])
J.append(np.arange(start, end))
I.append(np.arange(volume.size - INTERVAL_LENGTH))
vol = np.vstack(vol)
ret = np.vstack(ret)
J = np.vstack(J)
I = np.vstack(I)
vol = vol.cumsum(axis=0)
ret = ret / close[:-INTERVAL_LENGTH]
filter = (ret > 1.0001) & (ret < 1.5) & (vol > 100)
vol = vol[filter]
ret = ret[filter]
I = I[filter]
J = J[filter]
output = zip(I.flat,J.flat,ret.flat,vol.flat)
return output
results = old_function(close, volume, INTERVAL_LENGTH)
results2 = new_function(close, volume, INTERVAL_LENGTH)
results3 = new_function(close, volume, INTERVAL_LENGTH)
# Using sets to compare, as the output
# is in a different order than the original function
print set(results) == set(results2)
print set(results) == set(results3)