Почему FindMaximum с методом Ньютона жалуется, что не может найти достаточное снижение функции? - PullRequest
1 голос
/ 26 августа 2010

Во-первых, это кажется (из ContourPlot) довольно простой проблемой максимизации, почему FindMaximum с методом Ньютона имеет проблемы?

Во-вторых, как мне избавиться от предупреждений?

В-третьих, если я не могу избавиться от этих предупреждений, как я могу определить, является ли предупреждение значимым, т.е. максимизация не удалась?

Например, в приведенном ниже коде FindMaximum с методом Ньютона выдает предупреждение, тогда как метод PrincipalAxis не

o = 1/5 Log[E^(-(h/Sqrt[3]))/(
     2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + 
      E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + 
      E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))] + 
   3/10 Log[E^(h/Sqrt[3])/(
     2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + 
      E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + 
      E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))] + 
   1/5 Log[E^(-(h/Sqrt[3]) - Sqrt[2] j)/(
     2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + 
      E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + 
      E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))] + 
   1/10 Log[E^(h/Sqrt[3] - Sqrt[2] j)/(
     2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + 
      E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + 
      E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))] + 
   1/10 Log[E^(-Sqrt[3] h + Sqrt[2] j)/(
     2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + 
      E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + 
      E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))] + 
   1/10 Log[E^(Sqrt[3] h + Sqrt[2] j)/(
     2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + 
      E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + 
      E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))];
(* -1 makes more contours towards maximum *)

contourFunc[n_, p_] := Function[{min, max},
   range = max - min;
   Table[Exp[p (x - 1)] x range + min, {x, 0, 1, 1/n}]
   ];
cf = contourFunc[10, -1];
ContourPlot @@ {o, {j, -1, 1}, {h, -1, 1}, Contours -> cf}

FindMaximum @@ {o, {{j, 0}, {h, 0}}, Method -> "Newton"}
FindMaximum @@ {o, {{j, 0}, {h, 0}}, Method -> "PrincipalAxis"}

Обратите внимание, я подумал, что, возможно, проблема в том, что градиент, равный 0 в направлении одного из компонентов, был проблемой, но если я нарушу начальную точку, я получу то же предупреждение, вот пример

o = 1/5 Log[E^(-(h/Sqrt[3]))/(
     2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + 
      E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + 
      E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))] + 
   1/5 Log[E^(h/Sqrt[3])/(
     2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + 
      E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + 
      E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))] + 
   1/10 Log[E^(-(h/Sqrt[3]) - Sqrt[2] j)/(
     2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + 
      E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + 
      E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))] + 
   3/10 Log[E^(h/Sqrt[3] - Sqrt[2] j)/(
     2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + 
      E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + 
      E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))] + 
   1/10 Log[E^(-Sqrt[3] h + Sqrt[2] j)/(
     2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + 
      E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + 
      E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))] + 
   1/10 Log[E^(Sqrt[3] h + Sqrt[2] j)/(
     2 E^(-(h/Sqrt[3])) + 2 E^(h/Sqrt[3]) + 
      E^(-(h/Sqrt[3]) - Sqrt[2] j) + E^(h/Sqrt[3] - Sqrt[2] j) + 
      E^(-Sqrt[3] h + Sqrt[2] j) + E^(Sqrt[3] h + Sqrt[2] j))];
ContourPlot @@ {o, {j, -1, 1}, {h, -1, 1}}
FindMaximum @@ {o, {{j, -0.008983550852535105`}, {h, 
    0.06931364191023386`}}, Method -> "Newton"}

1 Ответ

4 голосов
/ 26 августа 2010

Математически, я не совсем уверен, почему метод Netwon не работает, но примеры в документации для FindMaximum указывают на эту конкретную проблему и сообщение об ошибке в Возможные проблемы При арифметике с машинной точностью даже функции с плавными максимумами могут показаться неровными ».

Таким образом, если вы увеличите рабочую точность, например, с помощью опции WorkingPrecision -> 20 до FindMaximum, предупреждения исчезнут:

In[25]:= FindMaximum[o, {{j, 0}, {h, 0}}, Method->"Newton", WorkingPrecision->20]

Out[25]= {-2.0694248079871222533, {j -> -0.14189560954670761863, h -> 0}}

Учитывая, что текст ошибки довольно описательный:

FindMaximum :: lstol: поиск строки уменьшил размер шага до допустимого значения, указанного в AccuracyGoal и PrecisionGoal, но не смог найти достаточного увеличения функции.Для соответствия этим допускам может потребоваться больше цифр рабочей точности MachinePrecision.>>

... Я подозреваю, что метод Ньютона не может достичь фиксированной точки с достаточно маленькой ошибкой, используя арифметику с машинной точностью.

Как подсказывает сообщение об ошибке, вы можете вместо этогоиспользуйте параметр AccuracyGoal, чтобы указать количество значащих цифр, которое вы хотите в решении, если вы не хотите переключаться на более медленную арифметику с высокой точностью:

In[27]:= FindMaximum[o, {{j, 0}, {h, 0}}, Method -> "Newton", AccuracyGoal -> 5]

Out[27]= {-2.06942, {j -> -0.141896, h -> -2.78113*10^-17}}

Надеюсь, это поможет!

...