Следуя приведенному здесь решению , вам, возможно, придется подражать эффекту stat_function
самостоятельно. Поскольку вы не приводите воспроизводимый пример, я создал простой пример, который, как мы надеемся, имитирует вашу проблему:
library(ggplot2)
reg.fun <- function(x, par1, par2){exp(-x*par1) + par2} #functional form
reg <- data.frame(g=factor(1:3), par1=(1:3)/10, par2=1:3) #parameters for 3 groups
#generate data from reg.fun
dd <- expand.grid(x=0:9, g=reg$g) #set x values, and 3 groups from reg
dd <- merge(dd, reg) #"import" parameters
dd$mn <- with(dd, reg.fun(x, par1, par2)) #value of function for given x's
dd$y <- rnorm(30, mean=dd$mn, sd=0.5) #add variability
dd <- subset(dd, select=c(g,x,y)) #remove auxiliary variables
#similarly to above generate values for the function on a fine grid of x values
pred.dd <- expand.grid(x=seq(0,9, length=101), g=levels(dd$g))
pred.dd <- merge(pred.dd, reg)
pred.dd$y <- with(pred.dd, reg.fun(x, par1, par2))
#draw the plot
p <- qplot(x,y, colour=g, data=dd) #scatterplot of data
p + geom_line(data=pred.dd) #add the curves of the functions