Поскольку число 510510 равно 2 * 3 * 5 * 7 * 11 * 13 * 17 , каждая умноженная пара этих простых чисел также является непростыми делителями:
>>> divmod(510510, 2*3)
(85085, 0)
>>> divmod(510510, 11*17)
(2730, 0)
6 (= 2 * 3) и 187 (= 11 * 17) не являются простыми числами и являются делителями проппера до 510510.
Вы можете легко найти все пары чисел, используя itertools:
>>> a=[2, 3, 5, 7, 11, 13, 17]
>>> list(itertools.combinations(a, 2))
[(2, 3), (2, 5), (2, 7), (2, 11), (2, 13), (2, 17), (3, 5), (3, 7), (3, 11), (3,
13), (3, 17), (5, 7), (5, 11), (5, 13), (5, 17), (7, 11), (7, 13), (7, 17), (11
, 13), (11, 17), (13, 17)]
Все, что вам нужно сделать, это умножить первое число пары на второе:
>>> a
[2, 3, 5, 7, 11, 13, 17]
>>> b=list(itertools.combinations(a, 2))
>>> [d*e for d,e in b]
[6, 10, 14, 22, 26, 34, 15, 21, 33, 39, 51, 35, 55, 65, 85, 77, 91, 119, 143, 187, 221]
Наконец, вам нужно повторить ту же процедуру для троек, четырех рядов и т. Д., Передав соответствующий номер в качестве второго параметра комбинациям ():
>>> b=[reduce((lambda o, p: o*p), y, 1) for x in xrange(2, len(a)) for y in itertools.combinations(a, x)]
>>> b
[6, 10, 14, 22, 26, 34, 15, 21, 33, 39, 51, 35, 55, 65, 85, 77, 91, 119, 143, 187, 221, 30, 42, 66, 78, 102, 70, 110, 130, 170, 154, 182, 238, 286, 374, 442, 105, 165, 195, 255, 231, 273, 357, 429, 561, 663, 385, 455, 595, 715, 935, 1105, 1001, 1309, 1547, 2431, 210, 330, 390, 510, 462, 546, 714, 858, 1122, 1326, 770, 910, 1190, 1430, 1870, 2210, 2002, 2618, 3094, 4862, 1155, 1365, 1785, 2145, 2805, 3315, 3003, 3927, 4641, 7293, 5005, 6545, 7735, 12155, 17017, 2310, 2730, 3570, 4290, 5610, 6630, 6006, 7854, 9282, 14586, 10010, 13090, 15470, 24310, 34034, 15015, 19635, 23205, 36465, 51051, 85085, 30030, 39270, 46410, 72930, 102102, 170170, 255255]