ggplot с 2 осями y с каждой стороны и разными масштабами - PullRequest
196 голосов
/ 23 июня 2010

Мне нужно построить гистограмму, показывающую количество и линейную диаграмму, показывающую скорость на одном графике, я могу сделать их оба по отдельности, но когда я их соединю, я масштабирую первый слой (т.е. geom_bar) перекрывается вторым слоем (т. е. geom_line).

Можно ли переместить ось geom_line вправо?

Ответы [ 14 ]

133 голосов
/ 23 июня 2010

Это невозможно в ggplot2, потому что я считаю, что графики с отдельными y-масштабами (не y-масштабами, которые являются преобразованиями друг друга) в корне ошибочны.Некоторые проблемы:

  • Не являются обратимыми: учитывая точку на пространстве графика, вы не можете однозначно отобразить ее обратно на точку в пространстве данных.

  • Их относительно трудно правильно прочитать по сравнению с другими вариантами.Подробнее см. Исследование двухмасштабных диаграмм данных , проведенное Петрой Изенберг, Анастасией Безерианос, Пьером Драгичевичем и Жаном-Даниэлем Фекете.

  • Их легко манипулироватьВводить в заблуждение: не существует уникального способа указать относительные масштабы осей, оставляя их открытыми для манипуляций.Два примера из блога Junkcharts: один , два

  • Они произвольны: почему есть только 2 шкалы, а не 3, 4 или десять?

Вы также можете прочитать длинное обсуждение Стивена Фью на тему Двухмасштабные оси на графиках Являются ли они когда-либо лучшим решением? .

99 голосов
/ 01 октября 2016

Начиная с ggplot2 2.2.0 вы можете добавить дополнительную ось, подобную этой (взято из объявления ggplot2 2.2.0 ):

ggplot(mpg, aes(displ, hwy)) + 
  geom_point() + 
  scale_y_continuous(
    "mpg (US)", 
    <b>sec.axis = sec_axis(~ . * 1.20, name = "mpg (UK)")</b>
  )

enter image description here

96 голосов
/ 25 июня 2010

Иногда клиенту нужны две шкалы y. Давать им «некорректную» речь часто бессмысленно. Но мне нравится, что ggplot2 настойчиво делает все правильно. Я уверен, что ggplot на самом деле обучает обычного пользователя правильной технике визуализации.

Может быть, вы можете использовать гранение и масштабирование бесплатно для сравнения двух рядов данных? - например, смотрите здесь: https://github.com/hadley/ggplot2/wiki/Align-two-plots-on-a-page

27 голосов
/ 26 марта 2018

Используя приведенные выше ответы и некоторую тонкую настройку (и во что бы то ни стало), вот способ достижения двух шкал с помощью sec_axis:

Предположим, что простой (и чисто вымышленный) набор данных dt: в течение пяти дней он отслеживает количество прерываний против производительности:

        when numinter prod
1 2018-03-20        1 0.95
2 2018-03-21        5 0.50
3 2018-03-23        4 0.70
4 2018-03-24        3 0.75
5 2018-03-25        4 0.60

(диапазоны обоих столбцов отличаются примерно в 5 раз).

Следующий код нарисует обе серии, которые используют всю ось Y:

ggplot() + 
  geom_bar(mapping = aes(x = dt$when, y = dt$numinter), stat = "identity", fill = "grey") +
  geom_line(mapping = aes(x = dt$when, y = dt$prod*5), size = 2, color = "blue") + 
  scale_x_date(name = "Day", labels = NULL) +
  scale_y_continuous(name = "Interruptions/day", 
    sec.axis = sec_axis(~./5, name = "Productivity % of best", 
      labels = function(b) { paste0(round(b * 100, 0), "%")})) + 
  theme(
      axis.title.y = element_text(color = "grey"),
      axis.title.y.right = element_text(color = "blue"))

Вот результат (код выше + подстройка цвета):

two scales in one ggplot2

Смысл (кроме использования sec_axis при указании шкалы y: , умножить каждое значение на 2-й ряд данных на 5 при указании ряда. Чтобы получить метки прямо в определении sec_axis, тогда ему нужно , делящее на 5 (и форматирование). Таким образом, критическая часть в приведенном выше коде на самом деле *5 в geom_line и ~./5 в sec_axis (формула, разделяющая текущее значение . на 5 ).

Для сравнения (я не хочу судить о подходах здесь), вот как выглядят две диаграммы друг над другом:

two charts above one another

Вы сами можете судить, кто лучше переносит сообщение («Не мешайте людям на работе!»). Полагаю, это честный способ решить.

Полный код для обоих изображений (на самом деле он не больше того, что указан выше, просто завершен и готов к запуску) находится здесь: https://gist.github.com/sebastianrothbucher/de847063f32fdff02c83b75f59c36a7d более подробное объяснение здесь: https://sebastianrothbucher.github.io/datascience/r/visualization/ggplot/2018/03/24/two-scales-ggplot-r.html

13 голосов
/ 20 марта 2016

Техническая основа для решения этой проблемы была предоставлена ​​ Кохске около 3 лет назад [ KOHSKE ].Тема и технические аспекты ее решения обсуждались в нескольких случаях здесь, на Stackoverflow [ID: 18989001, 29235405, 21026598].Поэтому я приведу только конкретный вариант и некоторые пояснения, используя вышеприведенные решения.

Допустим, у нас есть некоторые данные y1 в группе G1 , к которым некоторыеданные y2 в группе G2 связаны каким-либо образом, например, с преобразованием диапазона / масштаба или с добавлением некоторого шума.Таким образом, каждый хочет построить данные вместе на одном графике со шкалой y1 слева и y2 справа.

  df <- data.frame(item=LETTERS[1:n],  y1=c(-0.8684, 4.2242, -0.3181, 0.5797, -0.4875), y2=c(-5.719, 205.184, 4.781, 41.952, 9.911 )) # made up!

> df
  item      y1         y2
1    A -0.8684 -19.154567
2    B  4.2242 219.092499
3    C -0.3181  18.849686
4    D  0.5797  46.945161
5    E -0.4875  -4.721973

Если мы теперь вычерчиваем наши данные вместе с чем-то вроде

ggplot(data=df, aes(label=item)) +
  theme_bw() + 
  geom_segment(aes(x='G1', xend='G2', y=y1, yend=y2), color='grey')+
  geom_text(aes(x='G1', y=y1), color='blue') +
  geom_text(aes(x='G2', y=y2), color='red') +
  theme(legend.position='none', panel.grid=element_blank())

, то это не очень хорошо выравнивается, так как меньший масштаб y1 явно уменьшается в большем масштабе y2 .

Хитрость здесь заключается в том, чтобы технически построить оба набора данных по первой шкале y1 , но сообщить вторую по вторичной оси с меткамипоказывая исходный масштаб y2 .

Итак, мы создаем первую вспомогательную функцию CalcFudgeAxis , которая вычисляет и собирает элементы новой оси, которые будут показаны.Функция может быть изменена на ayones like (эта просто отображает y2 на диапазон y1 ).

CalcFudgeAxis = function( y1, y2=y1) {
  Cast2To1 = function(x) ((ylim1[2]-ylim1[1])/(ylim2[2]-ylim2[1])*x) # x gets mapped to range of ylim2
  ylim1 <- c(min(y1),max(y1))
  ylim2 <- c(min(y2),max(y2))    
  yf <- Cast2To1(y2)
  labelsyf <- pretty(y2)  
  return(list(
    yf=yf,
    labels=labelsyf,
    breaks=Cast2To1(labelsyf)
  ))
}

, что дает некоторые значения:

> FudgeAxis <- CalcFudgeAxis( df$y1, df$y2 )

> FudgeAxis
$yf
[1] -0.4094344  4.6831656  0.4029175  1.0034664 -0.1009335

$labels
[1] -50   0  50 100 150 200 250

$breaks
[1] -1.068764  0.000000  1.068764  2.137529  3.206293  4.275058  5.343822


> cbind(df, FudgeAxis$yf)
  item      y1         y2 FudgeAxis$yf
1    A -0.8684 -19.154567   -0.4094344
2    B  4.2242 219.092499    4.6831656
3    C -0.3181  18.849686    0.4029175
4    D  0.5797  46.945161    1.0034664
5    E -0.4875  -4.721973   -0.1009335

Теперь я обернул решение Кохске во вторую вспомогательную функцию PlotWithFudgeAxis (в которую мы бросаем объект ggplot и вспомогательный объект новой оси):

library(gtable)
library(grid)

PlotWithFudgeAxis = function( plot1, FudgeAxis) {
  # based on: https://rpubs.com/kohske/dual_axis_in_ggplot2
  plot2 <- plot1 + with(FudgeAxis, scale_y_continuous( breaks=breaks, labels=labels))

  #extract gtable
  g1<-ggplot_gtable(ggplot_build(plot1))
  g2<-ggplot_gtable(ggplot_build(plot2))

  #overlap the panel of the 2nd plot on that of the 1st plot
  pp<-c(subset(g1$layout, name=="panel", se=t:r))
  g<-gtable_add_grob(g1, g2$grobs[[which(g2$layout$name=="panel")]], pp$t, pp$l, pp$b,pp$l)

  ia <- which(g2$layout$name == "axis-l")
  ga <- g2$grobs[[ia]]
  ax <- ga$children[[2]]
  ax$widths <- rev(ax$widths)
  ax$grobs <- rev(ax$grobs)
  ax$grobs[[1]]$x <- ax$grobs[[1]]$x - unit(1, "npc") + unit(0.15, "cm")
  g <- gtable_add_cols(g, g2$widths[g2$layout[ia, ]$l], length(g$widths) - 1)
  g <- gtable_add_grob(g, ax, pp$t, length(g$widths) - 1, pp$b)

  grid.draw(g)
}

Теперь все можно собрать воедино: Ниже приведен код, показывающий, как предлагаемое решение можно использовать в повседневной среде .Вызов plot теперь больше не отображает исходные данные y2 , кроме клонированной версии yf (хранящейся в предварительно рассчитанном вспомогательном объекте FudgeAxis ), который запускаетшкала у1 .Исходный объект ggplot затем обрабатывается с помощью вспомогательной функции Кохске PlotWithFudgeAxis , чтобы добавить вторую ось, сохраняющую шкалы y2 .Он также строит график, которым манипулируют.

FudgeAxis <- CalcFudgeAxis( df$y1, df$y2 )

tmpPlot <- ggplot(data=df, aes(label=item)) +
      theme_bw() + 
      geom_segment(aes(x='G1', xend='G2', y=y1, yend=FudgeAxis$yf), color='grey')+
      geom_text(aes(x='G1', y=y1), color='blue') +
      geom_text(aes(x='G2', y=FudgeAxis$yf), color='red') +
      theme(legend.position='none', panel.grid=element_blank())

PlotWithFudgeAxis(tmpPlot, FudgeAxis)

Теперь он строится по желанию с двумя осями, y1 слева и y2 справа

2 axes

Вышеизложенное решение, проще говоря, ограниченный шаткий взлом.Когда он играет с ядром ggplot, он выдаст несколько предупреждений о том, что мы обмениваемся постфактум масштабами и т. Д. С ним нужно обращаться осторожно, и он может вызвать нежелательное поведение в другой настройке.Также может потребоваться возиться с вспомогательными функциями, чтобы получить макет по желанию.Размещение легенды - такая проблема (она будет размещена между панелью и новой осью; именно поэтому я ее и отбросил).Масштабирование / выравнивание оси 2 также немного сложное: приведенный выше код хорошо работает, когда обе шкалы содержат «0», в противном случае одна ось сдвигается.Так что, безусловно, с некоторыми возможностями для улучшения ...

В случае, если вы хотите сохранить картинку, нужно перевести вызов в устройство открыть / закрыть:

png(...)
PlotWithFudgeAxis(tmpPlot, FudgeAxis)
dev.off()
10 голосов
/ 10 декабря 2018

Существуют распространенные оси дуэли y, например климатологический график , показывающий месячную температуру и количество осадков. Вот простое решение, обобщенное на основе решения Мегатрона и позволяющее установить нижний предел переменных на значение, отличное от нуля:

Пример данных:

climate <- tibble(
  Month = 1:12,
  Temp = c(-4,-4,0,5,11,15,16,15,11,6,1,-3),
  Precip = c(49,36,47,41,53,65,81,89,90,84,73,55)
  )

Установите пределы каждой оси вручную:

ylim.prim <- c(0, 180)   # in this example, precipitation
ylim.sec <- c(-4, 18)    # in this example, temperature

Следующее делает необходимые вычисления, основанные на этих пределах, и делает сам график:

b <- diff(ylim.prim)/diff(ylim.sec)
a <- b*(ylim.prim[1] - ylim.sec[1])

ggplot(climate, aes(Month, Precip)) +
  geom_col() +
  geom_line(aes(y = a + Temp*b), color = "red") +
  scale_y_continuous("Precipitation", sec.axis = sec_axis(~ (. - a)/b, name = "Temperature")) +
  scale_x_continuous("Month", breaks = 1:12) +
  ggtitle("Climatogram for Oslo (1961-1990)")  

Climatogram showing temperature as line and precipitation as barplot

Если вы хотите убедиться, что красная линия соответствует правой оси Y, вы можете добавить предложение theme к коду:

ggplot(climate, aes(Month, Precip)) +
  geom_col() +
  geom_line(aes(y = a + Temp*b), color = "red") +
  scale_y_continuous("Precipitation", sec.axis = sec_axis(~ (. - a)/b, name = "Temperature")) +
  scale_x_continuous("Month", breaks = 1:12) +
  theme(axis.line.y.right = element_line(color = "red"), 
        axis.ticks.y.right = element_line(color = "red"),
        axis.text.y.right = element_text(color = "red"), 
        axis.title.y.right = element_text(color = "red")
        ) +
  ggtitle("Climatogram for Oslo (1961-1990)")

, который окрашивает правую ось:

Climatogram with red right-hand axis

8 голосов
/ 11 мая 2015

Следующая статья помогла мне объединить два графика, сгенерированных ggplot2 в одной строке:

Несколько графиков на одной странице (ggplot2) с помощью Cookbook для R

А вот как может выглядеть код в этом случае:

p1 <- 
  ggplot() + aes(mns)+ geom_histogram(aes(y=..density..), binwidth=0.01, colour="black", fill="white") + geom_vline(aes(xintercept=mean(mns, na.rm=T)), color="red", linetype="dashed", size=1) +  geom_density(alpha=.2)

p2 <- 
  ggplot() + aes(mns)+ geom_histogram( binwidth=0.01, colour="black", fill="white") + geom_vline(aes(xintercept=mean(mns, na.rm=T)), color="red", linetype="dashed", size=1)  

multiplot(p1,p2,cols=2)
6 голосов
/ 01 апреля 2017

Для меня самой сложной задачей было выяснить функцию преобразования между двумя осями.Для этого я использовал myCurveFit .

> dput(combined_80_8192 %>% filter (time > 270, time < 280))
structure(list(run = c(268L, 268L, 268L, 268L, 268L, 268L, 268L, 
268L, 268L, 268L, 263L, 263L, 263L, 263L, 263L, 263L, 263L, 263L, 
263L, 263L, 269L, 269L, 269L, 269L, 269L, 269L, 269L, 269L, 269L, 
269L, 261L, 261L, 261L, 261L, 261L, 261L, 261L, 261L, 261L, 261L, 
267L, 267L, 267L, 267L, 267L, 267L, 267L, 267L, 267L, 267L, 265L, 
265L, 265L, 265L, 265L, 265L, 265L, 265L, 265L, 265L, 266L, 266L, 
266L, 266L, 266L, 266L, 266L, 266L, 266L, 266L, 262L, 262L, 262L, 
262L, 262L, 262L, 262L, 262L, 262L, 262L, 264L, 264L, 264L, 264L, 
264L, 264L, 264L, 264L, 264L, 264L, 260L, 260L, 260L, 260L, 260L, 
260L, 260L, 260L, 260L, 260L), repetition = c(8L, 8L, 8L, 8L, 
8L, 8L, 8L, 8L, 8L, 8L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 
9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 9L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 5L, 5L, 
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 
6L, 6L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 4L, 4L, 
4L, 4L, 4L, 4L, 4L, 4L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L
), module = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "scenario.node[0].nicVLCTail.phyVLC", class = "factor"), 
    configname = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
    1L, 1L), .Label = "Road-Vlc", class = "factor"), packetByteLength = c(8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 
    8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L, 8192L
    ), numVehicles = c(2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 
    2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L
    ), dDistance = c(80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L, 
    80L, 80L, 80L, 80L, 80L, 80L, 80L, 80L), time = c(270.166006903445, 
    271.173853699836, 272.175873251122, 273.177524313334, 274.182946177105, 
    275.188959464989, 276.189675339937, 277.198250244799, 278.204619457189, 
    279.212562800009, 270.164199199177, 271.168527215152, 272.173072994958, 
    273.179210429715, 274.184351047337, 275.18980754378, 276.194816792995, 
    277.198598277809, 278.202398083519, 279.210634593917, 270.210674322891, 
    271.212395107473, 272.218871923292, 273.219060500457, 274.220486359614, 
    275.22401452372, 276.229646658839, 277.231060448138, 278.240407241942, 
    279.2437126347, 270.283554249858, 271.293168593832, 272.298574288769, 
    273.304413221348, 274.306272082517, 275.309023049011, 276.317805897347, 
    277.324403550028, 278.332855848701, 279.334046374594, 270.118608539613, 
    271.127947700074, 272.133887145863, 273.135726000491, 274.135994529981, 
    275.136563912708, 276.140120735361, 277.144298344151, 278.146885137621, 
    279.147552358659, 270.206015567272, 271.214618077209, 272.216566814903, 
    273.225435592582, 274.234014573683, 275.242949179958, 276.248417809711, 
    277.248800670023, 278.249750333404, 279.252926560188, 270.217182684494, 
    271.218357511397, 272.224698488895, 273.231112784327, 274.238740508457, 
    275.242715184122, 276.249053562718, 277.250325509798, 278.258488063493, 
    279.261141590137, 270.282904173953, 271.284689544638, 272.294220723234, 
    273.299749415592, 274.30628880553, 275.312075103126, 276.31579134717, 
    277.321905523606, 278.326305136748, 279.333056502253, 270.258991527456, 
    271.260224091407, 272.270076810133, 273.27052037648, 274.274119348094, 
    275.280808254502, 276.286353887245, 277.287064312339, 278.294444793276, 
    279.296772014594, 270.333066283904, 271.33877455992, 272.345842319903, 
    273.350858180493, 274.353972278505, 275.360454510107, 276.365088896161, 
    277.369166956941, 278.372571708911, 279.38017503079), distanceToTx = c(80.255266401689, 
    80.156059067023, 79.98823695539, 79.826647129071, 79.76678667135, 
    79.788239825292, 79.734539327997, 79.74766421514, 79.801243848241, 
    79.765920888341, 80.255266401689, 80.15850240049, 79.98823695539, 
    79.826647129071, 79.76678667135, 79.788239825292, 79.735078924078, 
    79.74766421514, 79.801243848241, 79.764622734914, 80.251248121732, 
    80.146436869316, 79.984682320466, 79.82292012342, 79.761908518748, 
    79.796988776281, 79.736920997657, 79.745038376718, 79.802638836686, 
    79.770029970452, 80.243475525691, 80.127918207499, 79.978303140866, 
    79.816259117883, 79.749322030693, 79.809916018889, 79.744456560867, 
    79.738655068783, 79.788697533211, 79.784288359619, 80.260412958482, 
    80.168426829066, 79.992034911214, 79.830845773284, 79.7756751763, 
    79.778156038931, 79.732399593756, 79.752769548846, 79.799967731078, 
    79.757585110481, 80.251248121732, 80.146436869316, 79.984682320466, 
    79.822062073459, 79.75884601899, 79.801590491435, 79.738335109094, 
    79.74347007248, 79.803215965043, 79.771471198955, 80.250257298678, 
    80.146436869316, 79.983831684476, 79.822062073459, 79.75884601899, 
    79.801590491435, 79.738335109094, 79.74347007248, 79.803849157574, 
    79.771471198955, 80.243475525691, 80.130180105198, 79.978303140866, 
    79.816881283718, 79.749322030693, 79.80984572883, 79.744456560867, 
    79.738655068783, 79.790548644175, 79.784288359619, 80.246349000313, 
    80.137056554491, 79.980581246037, 79.818924707937, 79.753176142361, 
    79.808777040341, 79.741609845588, 79.740770913572, 79.796316397253, 
    79.777593733292, 80.238796415443, 80.119021911134, 79.974810568944, 
    79.814065350562, 79.743657315504, 79.810146783217, 79.749945098869, 
    79.737122584544, 79.781650522348, 79.791554933936), headerNoError = c(0.99999999989702, 
    0.9999999999981, 0.99999999999946, 0.9999999928026, 0.99999873265475, 
    0.77080141574964, 0.99007491438593, 0.99994396605059, 0.45588747062284, 
    0.93484381262491, 0.99999999989702, 0.99999999999816, 0.99999999999946, 
    0.9999999928026, 0.99999873265475, 0.77080141574964, 0.99008458785106, 
    0.99994396605059, 0.45588747062284, 0.93480223051707, 0.99999999989735, 
    0.99999999999789, 0.99999999999946, 0.99999999287551, 0.99999876302649, 
    0.46903147501117, 0.98835168988253, 0.99994427085086, 0.45235035271542, 
    0.93496741877335, 0.99999999989803, 0.99999999999781, 0.99999999999948, 
    0.99999999318224, 0.99994254156311, 0.46891362282273, 0.93382613917348, 
    0.99994594904099, 0.93002915596843, 0.93569767251247, 0.99999999989658, 
    0.99999999998074, 0.99999999999946, 0.99999999272802, 0.99999871586781, 
    0.76935240919896, 0.99002587758346, 0.99999881589732, 0.46179415706093, 
    0.93417422376389, 0.99999999989735, 0.99999999999789, 0.99999999999946, 
    0.99999999289347, 0.99999876940486, 0.46930769326427, 0.98837353639905, 
    0.99994447154714, 0.16313586712094, 0.93500824170148, 0.99999999989744, 
    0.99999999999789, 0.99999999999946, 0.99999999289347, 0.99999876940486, 
    0.46930769326427, 0.98837353639905, 0.99994447154714, 0.16330039178981, 
    0.93500824170148, 0.99999999989803, 0.99999999999781, 0.99999999999948, 
    0.99999999316541, 0.99994254156311, 0.46794586553266, 0.93382613917348, 
    0.99994594904099, 0.9303627789484, 0.93569767251247, 0.99999999989778, 
    0.9999999999978, 0.99999999999948, 0.99999999311433, 0.99999878195152, 
    0.47101897739483, 0.93368891853679, 0.99994556595217, 0.7571113417265, 
    0.93553999975802, 0.99999999998191, 0.99999999999784, 0.99999999999971, 
    0.99999891129658, 0.99994309267792, 0.46510628979591, 0.93442584181035, 
    0.99894450514543, 0.99890078483692, 0.76933812306423), receivedPower_dbm = c(-93.023492290586, 
    -92.388378035287, -92.205716340607, -93.816400586752, -95.023489422885, 
    -100.86308557253, -98.464763536915, -96.175707680373, -102.06189538385, 
    -99.716653422746, -93.023492290586, -92.384760627397, -92.205716340607, 
    -93.816400586752, -95.023489422885, -100.86308557253, -98.464201120719, 
    -96.175707680373, -102.06189538385, -99.717150021506, -93.022927803442, 
    -92.404017215549, -92.204561341714, -93.814319484729, -95.016990717792, 
    -102.01669022332, -98.558088145955, -96.173817001483, -102.07406915124, 
    -99.71517574876, -93.021813165972, -92.409586309743, -92.20229160243, 
    -93.805335867418, -96.184419849593, -102.01709540787, -99.728735187547, 
    -96.163233028048, -99.772547164798, -99.706399753853, -93.024204617071, 
    -92.745813384859, -92.206884754512, -93.818508150122, -95.027018807793, 
    -100.87000577258, -98.467607232407, -95.005311380324, -102.04157607608, 
    -99.724619517, -93.022927803442, -92.404017215549, -92.204561341714, 
    -93.813803344588, -95.015606885523, -102.0157405687, -98.556982278361, 
    -96.172566862738, -103.21871579865, -99.714687230796, -93.022787428238, 
    -92.404017215549, -92.204274688493, -93.813803344588, -95.015606885523, 
    -102.0157405687, -98.556982278361, -96.172566862738, -103.21784988098, 
    -99.714687230796, -93.021813165972, -92.409950613665, -92.20229160243, 
    -93.805838770576, -96.184419849593, -102.02042267497, -99.728735187547, 
    -96.163233028048, -99.768774335378, -99.706399753853, -93.022228914406, 
    -92.411048503835, -92.203136463155, -93.807357409082, -95.012865008237, 
    -102.00985717796, -99.730352912911, -96.165675535906, -100.92744056572, 
    -99.708301333236, -92.735781110993, -92.408137395049, -92.119533319039, 
    -94.982938427575, -96.181073124017, -102.03018610927, -99.721633629806, 
    -97.32940323644, -97.347613268692, -100.87007386786), snr = c(49.848348091678, 
    57.698190927109, 60.17669971462, 41.529809724535, 31.452202106925, 
    8.1976890851341, 14.240447804094, 24.122884195464, 6.2202875499406, 
    10.674183333671, 49.848348091678, 57.746270018264, 60.17669971462, 
    41.529809724535, 31.452202106925, 8.1976890851341, 14.242292077376, 
    24.122884195464, 6.2202875499406, 10.672962852322, 49.854827699773, 
    57.49079026127, 60.192705735317, 41.549715223147, 31.499301851462, 
    6.2853718719014, 13.937702343688, 24.133388256416, 6.2028757927148, 
    10.677815810561, 49.867624820879, 57.417115267867, 60.224172277442, 
    41.635752021705, 24.074540962859, 6.2847854917092, 10.644529778044, 
    24.19227425387, 10.537686730745, 10.699414795917, 49.84017267426, 
    53.139646558768, 60.160512118809, 41.509660845114, 31.42665220053, 
    8.1846370024428, 14.231126423354, 31.584125885363, 6.2494585568733, 
    10.654622041348, 49.854827699773, 57.49079026127, 60.192705735317, 
    41.55465351989, 31.509340361646, 6.2867464196657, 13.941251828322, 
    24.140336174865, 4.765718874642, 10.679016976694, 49.856439162736, 
    57.49079026127, 60.196678846453, 41.55465351989, 31.509340361646, 
    6.2867464196657, 13.941251828322, 24.140336174865, 4.7666691818074, 
    10.679016976694, 49.867624820879, 57.412299088098, 60.224172277442, 
    41.630930975211, 24.074540962859, 6.279972363168, 10.644529778044, 
    24.19227425387, 10.546845071479, 10.699414795917, 49.862851240855, 
    57.397787176282, 60.212457625018, 41.61637603957, 31.529239767749, 
    6.2952688513108, 10.640565481982, 24.178672145334, 8.0771089950663, 
    10.694731030907, 53.262541905639, 57.43627424514, 61.382796189332, 
    31.747253311549, 24.093100244121, 6.2658701281075, 10.661949889074, 
    18.495227442305, 18.417839037171, 8.1845086722809), frameId = c(15051, 
    15106, 15165, 15220, 15279, 15330, 15385, 15452, 15511, 15566, 
    15019, 15074, 15129, 15184, 15239, 15298, 15353, 15412, 15471, 
    15526, 14947, 14994, 15057, 15112, 15171, 15226, 15281, 15332, 
    15391, 15442, 14971, 15030, 15085, 15144, 15203, 15262, 15321, 
    15380, 15435, 15490, 14915, 14978, 15033, 15092, 15147, 15198, 
    15257, 15312, 15371, 15430, 14975, 15034, 15089, 15140, 15195, 
    15254, 15313, 15368, 15427, 15478, 14987, 15046, 15105, 15160, 
    15215, 15274, 15329, 15384, 15447, 15506, 14943, 15002, 15061, 
    15116, 15171, 15230, 15285, 15344, 15399, 15454, 14971, 15026, 
    15081, 15136, 15195, 15258, 15313, 15368, 15423, 15478, 15039, 
    15094, 15149, 15204, 15263, 15314, 15369, 15428, 15487, 15546
    ), packetOkSinr = c(0.99999999314881, 0.9999999998736, 0.99999999996428, 
    0.99999952114066, 0.99991568416005, 3.00628034688444e-08, 
    0.51497487795954, 0.99627877136019, 0, 0.011303253101957, 
    0.99999999314881, 0.99999999987726, 0.99999999996428, 0.99999952114066, 
    0.99991568416005, 3.00628034688444e-08, 0.51530974419663, 
    0.99627877136019, 0, 0.011269851265775, 0.9999999931708, 
    0.99999999985986, 0.99999999996428, 0.99999952599145, 0.99991770469509, 
    0, 0.45861812482641, 0.99629897628155, 0, 0.011403119534097, 
    0.99999999321568, 0.99999999985437, 0.99999999996519, 0.99999954639936, 
    0.99618434878558, 0, 0.010513119213425, 0.99641022914441, 
    0.00801687746446111, 0.012011103529927, 0.9999999931195, 
    0.99999999871861, 0.99999999996428, 0.99999951617905, 0.99991456738049, 
    2.6525298291169e-08, 0.51328066587104, 0.9999212220316, 0, 
    0.010777054258914, 0.9999999931708, 0.99999999985986, 0.99999999996428, 
    0.99999952718674, 0.99991812902805, 0, 0.45929307038653, 
    0.99631228046814, 0, 0.011436292559188, 0.99999999317629, 
    0.99999999985986, 0.99999999996428, 0.99999952718674, 0.99991812902805, 
    0, 0.45929307038653, 0.99631228046814, 0, 0.011436292559188, 
    0.99999999321568, 0.99999999985437, 0.99999999996519, 0.99999954527918, 
    0.99618434878558, 0, 0.010513119213425, 0.99641022914441, 
    0.00821047996950475, 0.012011103529927, 0.99999999319919, 
    0.99999999985345, 0.99999999996519, 0.99999954188106, 0.99991896371849, 
    0, 0.010410830482692, 0.996384831822, 9.12484388049251e-09, 
    0.011877185067536, 0.99999999879646, 0.9999999998562, 0.99999999998077, 
    0.99992756868677, 0.9962208785486, 0, 0.010971897073662, 
    0.93214999078663, 0.92943956665979, 2.64925478221656e-08), 
    snir = c(49.848348091678, 57.698190927109, 60.17669971462, 
    41.529809724535, 31.452202106925, 8.1976890851341, 14.240447804094, 
    24.122884195464, 6.2202875499406, 10.674183333671, 49.848348091678, 
    57.746270018264, 60.17669971462, 41.529809724535, 31.452202106925, 
    8.1976890851341, 14.242292077376, 24.122884195464, 6.2202875499406, 
    10.672962852322, 49.854827699773, 57.49079026127, 60.192705735317, 
    41.549715223147, 31.499301851462, 6.2853718719014, 13.937702343688, 
    24.133388256416, 6.2028757927148, 10.677815810561, 49.867624820879, 
    57.417115267867, 60.224172277442, 41.635752021705, 24.074540962859, 
    6.2847854917092, 10.644529778044, 24.19227425387, 10.537686730745, 
    10.699414795917, 49.84017267426, 53.139646558768, 60.160512118809, 
    41.509660845114, 31.42665220053, 8.1846370024428, 14.231126423354, 
    31.584125885363, 6.2494585568733, 10.654622041348, 49.854827699773, 
    57.49079026127, 60.192705735317, 41.55465351989, 31.509340361646, 
    6.2867464196657, 13.941251828322, 24.140336174865, 4.765718874642, 
    10.679016976694, 49.856439162736, 57.49079026127, 60.196678846453, 
    41.55465351989, 31.509340361646, 6.2867464196657, 13.941251828322, 
    24.140336174865, 4.7666691818074, 10.679016976694, 49.867624820879, 
    57.412299088098, 60.224172277442, 41.630930975211, 24.074540962859, 
    6.279972363168, 10.644529778044, 24.19227425387, 10.546845071479, 
    10.699414795917, 49.862851240855, 57.397787176282, 60.212457625018, 
    41.61637603957, 31.529239767749, 6.2952688513108, 10.640565481982, 
    24.178672145334, 8.0771089950663, 10.694731030907, 53.262541905639, 
    57.43627424514, 61.382796189332, 31.747253311549, 24.093100244121, 
    6.2658701281075, 10.661949889074, 18.495227442305, 18.417839037171, 
    8.1845086722809), ookSnirBer = c(8.8808636558081e-24, 3.2219795637026e-27, 
    2.6468895519653e-28, 3.9807779074715e-20, 1.0849324265615e-15, 
    2.5705217057696e-05, 4.7313805615763e-08, 1.8800438086075e-12, 
    0.00021005320203921, 1.9147343768384e-06, 8.8808636558081e-24, 
    3.0694773489537e-27, 2.6468895519653e-28, 3.9807779074715e-20, 
    1.0849324265615e-15, 2.5705217057696e-05, 4.7223753038869e-08, 
    1.8800438086075e-12, 0.00021005320203921, 1.9171738578051e-06, 
    8.8229427230445e-24, 3.9715925056443e-27, 2.6045198111088e-28, 
    3.9014083702734e-20, 1.0342658440386e-15, 0.00019591630514278, 
    6.4692014108683e-08, 1.8600094209271e-12, 0.0002140067535655, 
    1.9074922485477e-06, 8.7096574467175e-24, 4.2779443633862e-27, 
    2.5231916788231e-28, 3.5761615214425e-20, 1.9750692814982e-12, 
    0.0001960392878411, 1.9748966344895e-06, 1.7515881895994e-12, 
    2.2078334799411e-06, 1.8649940680806e-06, 8.954486301678e-24, 
    3.2021085732779e-25, 2.690441113724e-28, 4.0627628846548e-20, 
    1.1134484878561e-15, 2.6061691733331e-05, 4.777159157954e-08, 
    9.4891388749738e-16, 0.00020359398491544, 1.9542110660398e-06, 
    8.8229427230445e-24, 3.9715925056443e-27, 2.6045198111088e-28, 
    3.8819641115984e-20, 1.0237769828158e-15, 0.00019562832342849, 
    6.4455095380046e-08, 1.8468752030971e-12, 0.0010099091367628, 
    1.9051035165106e-06, 8.8085966897635e-24, 3.9715925056443e-27, 
    2.594108048185e-28, 3.8819641115984e-20, 1.0237769828158e-15, 
    0.00019562832342849, 6.4455095380046e-08, 1.8468752030971e-12, 
    0.0010088638355194, 1.9051035165106e-06, 8.7096574467175e-24, 
    4.2987746909572e-27, 2.5231916788231e-28, 3.593647329558e-20, 
    1.9750692814982e-12, 0.00019705170257492, 1.9748966344895e-06, 
    1.7515881895994e-12, 2.1868296425817e-06, 1.8649940680806e-06, 
    8.7517439682173e-24, 4.3621551072316e-27, 2.553168170837e-28, 
    3.6469582463164e-20, 1.0032983660212e-15, 0.00019385229409318, 
    1.9830820164805e-06, 1.7760568361323e-12, 2.919419915209e-05, 
    1.8741284335866e-06, 2.8285944348148e-25, 4.1960751547207e-27, 
    7.8468215407139e-29, 8.0407329049747e-16, 1.9380328071065e-12, 
    0.00020004849911333, 1.9393279417733e-06, 5.9354475879597e-10, 
    6.4258355913627e-10, 2.6065221215415e-05), ookSnrBer = c(8.8808636558081e-24, 
    3.2219795637026e-27, 2.6468895519653e-28, 3.9807779074715e-20, 
    1.0849324265615e-15, 2.5705217057696e-05, 4.7313805615763e-08, 
    1.8800438086075e-12, 0.00021005320203921, 1.9147343768384e-06, 
    8.8808636558081e-24, 3.0694773489537e-27, 2.6468895519653e-28, 
    3.9807779074715e-20, 1.0849324265615e-15, 2.5705217057696e-05, 
    4.7223753038869e-08, 1.8800438086075e-12, 0.00021005320203921, 
    1.9171738578051e-06, 8.8229427230445e-24, 3.9715925056443e-27, 
    2.6045198111088e-28, 3.9014083702734e-20, 1.0342658440386e-15, 
    0.00019591630514278, 6.4692014108683e-08, 1.8600094209271e-12, 
    0.0002140067535655, 1.9074922485477e-06, 8.7096574467175e-24, 
    4.2779443633862e-27, 2.5231916788231e-28, 3.5761615214425e-20, 
    1.9750692814982e-12, 0.0001960392878411, 1.9748966344895e-06, 
    1.7515881895994e-12, 2.2078334799411e-06, 1.8649940680806e-06, 
    8.954486301678e-24, 3.2021085732779e-25, 2.690441113724e-28, 
    4.0627628846548e-20, 1.1134484878561e-15, 2.6061691733331e-05, 
    4.777159157954e-08, 9.4891388749738e-16, 0.00020359398491544, 
    1.9542110660398e-06, 8.8229427230445e-24, 3.9715925056443e-27, 
    2.6045198111088e-28, 3.8819641115984e-20, 1.0237769828158e-15, 
    0.00019562832342849, 6.4455095380046e-08, 1.8468752030971e-12, 
    0.0010099091367628, 1.9051035165106e-06, 8.8085966897635e-24, 
    3.9715925056443e-27, 2.594108048185e-28, 3.8819641115984e-20, 
    1.0237769828158e-15, 0.00019562832342849, 6.4455095380046e-08, 
    1.8468752030971e-12, 0.0010088638355194, 1.9051035165106e-06, 
    8.7096574467175e-24, 4.2987746909572e-27, 2.5231916788231e-28, 
    3.593647329558e-20, 1.9750692814982e-12, 0.00019705170257492, 
    1.9748966344895e-06, 1.7515881895994e-12, 2.1868296425817e-06, 
    1.8649940680806e-06, 8.7517439682173e-24, 4.3621551072316e-27, 
    2.553168170837e-28, 3.6469582463164e-20, 1.0032983660212e-15, 
    0.00019385229409318, 1.9830820164805e-06, 1.7760568361323e-12, 
    2.919419915209e-05, 1.8741284335866e-06, 2.8285944348148e-25, 
    4.1960751547207e-27, 7.8468215407139e-29, 8.0407329049747e-16, 
    1.9380328071065e-12, 0.00020004849911333, 1.9393279417733e-06, 
    5.9354475879597e-10, 6.4258355913627e-10, 2.6065221215415e-05
    )), class = "data.frame", row.names = c(NA, -100L), .Names = c("run", 
"repetition", "module", "configname", "packetByteLength", "numVehicles", 
"dDistance", "time", "distanceToTx", "headerNoError", "receivedPower_dbm", 
"snr", "frameId", "packetOkSinr", "snir", "ookSnirBer", "ookSnrBer"
))

Поиск функции преобразования

  1. y1 ->y2 Эта функция используется для преобразования данных вторичной оси y в «нормализацию» в соответствии с первой осью y

enter image description here

функция преобразования: f(y1) = 0.025*x + 2.75


y2 -> y1 Эта функция используется для преобразования точек разрыва первой оси y в значения второй оси y.Обратите внимание, что теперь ось поменялась местами.

enter image description here

Функция преобразования: f(y1) = 40*x - 110


Plotting

Обратите внимание, как функции преобразования используются в вызове ggplot для преобразования данных «на лету»

ggplot(data=combined_80_8192 %>% filter (time > 270, time < 280), aes(x=time) ) +
  stat_summary(aes(y=receivedPower_dbm ), fun.y=mean, geom="line", colour="black") +
  stat_summary(aes(y=packetOkSinr*40 - 110 ), fun.y=mean, geom="line", colour="black", position = position_dodge(width=10)) +
  scale_x_continuous() +
  scale_y_continuous(breaks = seq(-0,-110,-10), "y_first", sec.axis=sec_axis(~.*0.025+2.75, name="y_second") ) 

Первый вызов stat_summaryтот, который устанавливает основу для первой оси у.Второй вызов stat_summary вызывается для преобразования данных.Помните, что все данные будут взяты за первую ось Y.Так что данные должны быть нормализованы для первой оси у.Для этого я использую функцию преобразования данных: y=packetOkSinr*40 - 110

Теперь для преобразования второй оси я использую противоположную функцию в вызове scale_y_continuous: sec.axis=sec_axis(~.*0.025+2.75, name="y_second").

enter image description here

5 голосов
/ 14 августа 2018

Вы можете создать коэффициент масштабирования, который применяется ко второму геому и правой оси Y.Это получено из решения Себастьяна.

library(ggplot2)

scaleFactor <- max(mtcars$cyl) / max(mtcars$hp)

ggplot(mtcars, aes(x=disp)) +
  geom_smooth(aes(y=cyl), method="loess", col="blue") +
  geom_smooth(aes(y=hp * scaleFactor), method="loess", col="red") +
  scale_y_continuous(name="cyl", sec.axis=sec_axis(~./scaleFactor, name="hp")) +
  theme(
    axis.title.y.left=element_text(color="blue"),
    axis.text.y.left=element_text(color="blue"),
    axis.title.y.right=element_text(color="red"),
    axis.text.y.right=element_text(color="red")
  )

enter image description here

Примечание: использование ggplot2 v3.0.0

4 голосов
/ 05 апреля 2017

Мы определенно могли бы построить график с двумя осями Y, используя базовую функцию R plot.

# pseudo dataset
df <- data.frame(x = seq(1, 1000, 1), y1 = sample.int(100, 1000, replace=T), y2 = sample(50, 1000, replace = T))

# plot first plot 
with(df, plot(y1 ~ x, col = "red"))

# set new plot
par(new = T) 

# plot second plot, but without axis
with(df, plot(y2 ~ x, type = "l", xaxt = "n", yaxt = "n", xlab = "", ylab = ""))

# define y-axis and put y-labs
axis(4)
with(df, mtext("y2", side = 4))
...