Предполагая, что я понимаю вашу проблему, я бы предложил использовать tapply()
вместо aggregate()
(см. ?tapply
для получения дополнительной информации). Тем не менее, очень полезен минимальный рабочий пример.
co.var <- function(x) ( 100*sd(x)/mean(x) )
## Data with multiple repeated measurements.
## There are three things (ID 1, 2, 3) that
## are measured two times, twice each (val1 and val2)
myDF<-data.frame(ID=c(1,2,3,1,2,3),val1=c(20,10,5,25,7,2),
val2=c(19,9,4,24,4,1))
## Calculate coefficient of variation for each measurement set
myDF$coVar<-apply(myDF[,c("val1","val2")],1,co.var)
## Use tapply() instead of aggregate
mySel<-tapply(seq_len(nrow(myDF)),myDF$ID,function(x){
curSub<-myDF[x,]
return(x[which(curSub$coVar==max(curSub$coVar))])
})
## The mySel vector is then the vector of rows that correspond to the
## maximum coefficient of variation for each ID
myDF[mySel,]
EDIT:
Есть более быстрые способы, один из которых ниже. Однако при наборе данных 40000 на 100 приведенный выше код занимал на моей машине всего 16-20 секунд.
# Create a big dataset
myDF <- data.frame(val1 = c(20, 10, 5, 25, 7, 2),
val2 = c(19, 9, 4, 24, 4, 1))
myDF <- myDF[sample(seq_len(nrow(myDF)), 40000, replace = TRUE), ]
myDF <- cbind(myDF, rep(myDF, 49))
myDF$ID <- sample.int(nrow(myDF)/5, nrow(myDF), replace = TRUE)
# Define a new function to work (slightly) better with large datasets
co.var.df <- function(x) ( 100*apply(x,1,sd)/rowMeans(x) )
# Create two datasets to benchmark the two methods
# (A second method proved slower than the third, hence the naming)
myDF.firstMethod <- myDF
myDF.thirdMethod <- myDF
Время оригинального метода
startTime <- Sys.time()
myDF.firstMethod$coVar <- apply(myDF.firstMethod[,
grep("val", names(myDF.firstMethod))], 1, co.var)
mySel <- tapply(seq_len(nrow(myDF.firstMethod)),
myDF.firstMethod$ID, function(x) {
curSub <- myDF.firstMethod[x, ]
return(x[which(curSub$coVar == max(curSub$coVar))])
}, simplify = FALSE)
endTime <- Sys.time()
R> endTime-startTime
Time difference of 17.87806 secs
Время второй метод
startTime3 <- Sys.time()
coVar3<-co.var.df(myDF.thirdMethod[,
grep("val",names(myDF.thirdMethod))])
mySel3 <- tapply(seq_along(coVar3),
myDF[, "ID"], function(x) {
return(x[which(coVar3[x] == max(coVar3[x]))])
}, simplify = FALSE)
endTime3 <- Sys.time()
R> endTime3-startTime3
Time difference of 2.024207 secs
И убедитесь, что мы получаем одинаковые результаты:
R> all.equal(mySel,mySel3)
[1] TRUE
Существует дополнительное изменение по сравнению с исходным сообщением, в котором отредактированный код считает, что может быть более одной строки с самым высоким CV для данного идентификатора. Поэтому, чтобы получить результаты отредактированного кода, вы должны unlist
объекты mySel
или mySel3
:
myDF.firstMethod[unlist(mySel),]
myDF.thirdMethod[unlist(mySel3),]