Проверено в Python 3.2.2:
import csv
from collections import defaultdict
reader = csv.DictReader(open('test.csv', newline=''))
cities = defaultdict(int)
for row in reader:
cities[row["CITY"]] += int(row["AMOUNT"])
writer = csv.writer(open('out.csv', 'w', newline = ''))
writer.writerow(["CITY", "AMOUNT"])
writer.writerows([city, cities[city]] for city in cities)
Результат:
CITY,AMOUNT
New York,25
London,75
Tokyo,45
Что касается ваших дополнительных требований:
import csv
from collections import defaultdict
def default_factory():
return [0, None, None, 0]
reader = csv.DictReader(open('test.csv', newline=''))
cities = defaultdict(default_factory)
for row in reader:
amount = int(row["AMOUNT"])
cities[row["CITY"]][0] += amount
max = cities[row["CITY"]][1]
cities[row["CITY"]][1] = amount if max is None else amount if amount > max else max
min = cities[row["CITY"]][2]
cities[row["CITY"]][2] = amount if min is None else amount if amount < min else min
cities[row["CITY"]][3] += 1
for city in cities:
cities[city][3] = cities[city][0]/cities[city][3] # calculate mean
writer = csv.writer(open('out.csv', 'w', newline = ''))
writer.writerow(["CITY", "AMOUNT", "max", "min", "mean"])
writer.writerows([city] + cities[city] for city in cities)
Это дает вам
CITY,AMOUNT,max,min,mean
New York,25,25,25,25.0
London,75,55,20,37.5
Tokyo,45,45,45,45.0
Обратите внимание, что в Python 2 вам потребуется дополнительная строка from __future__ import division
вверху, чтобы получить правильные результаты.