Использовать метод псевдонима
Если вы собираетесь бросать много раз (как в игре), вы должны использовать метод псевдонима.
Код ниже довольно длинная реализация такого метода псевдонима. Но это из-за инициализации. Поиск элементов выполняется очень быстро (см. Методы next
и applyAsInt
, которые они не зацикливают).
Использование
Set<Item> items = ... ;
ToDoubleFunction<Item> weighter = ... ;
Random random = new Random();
RandomSelector<T> selector = RandomSelector.weighted(items, weighter);
Item drop = selector.next(random);
Осуществление
Эта реализация:
- использует Java 8 ;
- спроектирован так, чтобы быть максимально быстрым (ну, по крайней мере, я попытался сделать это с помощью микробанчмаркинга);
- полностью поточно-ориентированный (для максимальной производительности оставьте по одному
Random
в каждом потоке, используйте ThreadLocalRandom
?);
- извлекает элементы в O (1) , в отличие от того, что вы обычно найдете в Интернете или в StackOverflow, где наивные реализации выполняются в O (n) или O (log (n));
- сохраняет элементы независимыми от их веса , поэтому элементу можно назначать различные веса в разных контекстах.
В любом случае, вот код. (Обратите внимание, что Я поддерживаю последнюю версию этого класса .)
import static java.util.Objects.requireNonNull;
import java.util.*;
import java.util.function.*;
public final class RandomSelector<T> {
public static <T> RandomSelector<T> weighted(Set<T> elements, ToDoubleFunction<? super T> weighter)
throws IllegalArgumentException {
requireNonNull(elements, "elements must not be null");
requireNonNull(weighter, "weighter must not be null");
if (elements.isEmpty()) { throw new IllegalArgumentException("elements must not be empty"); }
// Array is faster than anything. Use that.
int size = elements.size();
T[] elementArray = elements.toArray((T[]) new Object[size]);
double totalWeight = 0d;
double[] discreteProbabilities = new double[size];
// Retrieve the probabilities
for (int i = 0; i < size; i++) {
double weight = weighter.applyAsDouble(elementArray[i]);
if (weight < 0.0d) { throw new IllegalArgumentException("weighter may not return a negative number"); }
discreteProbabilities[i] = weight;
totalWeight += weight;
}
if (totalWeight == 0.0d) { throw new IllegalArgumentException("the total weight of elements must be greater than 0"); }
// Normalize the probabilities
for (int i = 0; i < size; i++) {
discreteProbabilities[i] /= totalWeight;
}
return new RandomSelector<>(elementArray, new RandomWeightedSelection(discreteProbabilities));
}
private final T[] elements;
private final ToIntFunction<Random> selection;
private RandomSelector(T[] elements, ToIntFunction<Random> selection) {
this.elements = elements;
this.selection = selection;
}
public T next(Random random) {
return elements[selection.applyAsInt(random)];
}
private static class RandomWeightedSelection implements ToIntFunction<Random> {
// Alias method implementation O(1)
// using Vose's algorithm to initialize O(n)
private final double[] probabilities;
private final int[] alias;
RandomWeightedSelection(double[] probabilities) {
int size = probabilities.length;
double average = 1.0d / size;
int[] small = new int[size];
int smallSize = 0;
int[] large = new int[size];
int largeSize = 0;
// Describe a column as either small (below average) or large (above average).
for (int i = 0; i < size; i++) {
if (probabilities[i] < average) {
small[smallSize++] = i;
} else {
large[largeSize++] = i;
}
}
// For each column, saturate a small probability to average with a large probability.
while (largeSize != 0 && smallSize != 0) {
int less = small[--smallSize];
int more = large[--largeSize];
probabilities[less] = probabilities[less] * size;
alias[less] = more;
probabilities[more] += probabilities[less] - average;
if (probabilities[more] < average) {
small[smallSize++] = more;
} else {
large[largeSize++] = more;
}
}
// Flush unused columns.
while (smallSize != 0) {
probabilities[small[--smallSize]] = 1.0d;
}
while (largeSize != 0) {
probabilities[large[--largeSize]] = 1.0d;
}
}
@Override public int applyAsInt(Random random) {
// Call random once to decide which column will be used.
int column = random.nextInt(probabilities.length);
// Call random a second time to decide which will be used: the column or the alias.
if (random.nextDouble() < probabilities[column]) {
return column;
} else {
return alias[column];
}
}
}
}