Я надеялся использовать пакет GBM
для логистической регрессии, но он дает ответы немного за пределами диапазона 0-1.Я пробовал предложенные параметры распределения для прогнозов 0-1 (bernoulli
и adaboost
), но это на самом деле усугубляет ситуацию при использовании gaussian
.
GBM_NTREES = 150
GBM_SHRINKAGE = 0.1
GBM_DEPTH = 4
GBM_MINOBS = 50
> GBM_model <- gbm.fit(
+ x = trainDescr
+ ,y = trainClass
+ ,distribution = "gaussian"
+ ,n.trees = GBM_NTREES
+ ,shrinkage = GBM_SHRINKAGE
+ ,interaction.depth = GBM_DEPTH
+ ,n.minobsinnode = GBM_MINOBS
+ ,verbose = TRUE)
Iter TrainDeviance ValidDeviance StepSize Improve
1 0.0603 nan 0.1000 0.0019
2 0.0588 nan 0.1000 0.0016
3 0.0575 nan 0.1000 0.0013
4 0.0563 nan 0.1000 0.0011
5 0.0553 nan 0.1000 0.0010
6 0.0546 nan 0.1000 0.0008
7 0.0539 nan 0.1000 0.0007
8 0.0533 nan 0.1000 0.0006
9 0.0528 nan 0.1000 0.0005
10 0.0524 nan 0.1000 0.0004
100 0.0484 nan 0.1000 0.0000
150 0.0481 nan 0.1000 -0.0000
> prediction <- predict.gbm(object = GBM_model
+ ,newdata = testDescr
+ ,GBM_NTREES)
> hist(prediction)
> range(prediction)
[1] -0.02945224 1.00706700
Бернулли:
GBM_model <- gbm.fit(
x = trainDescr
,y = trainClass
,distribution = "bernoulli"
,n.trees = GBM_NTREES
,shrinkage = GBM_SHRINKAGE
,interaction.depth = GBM_DEPTH
,n.minobsinnode = GBM_MINOBS
,verbose = TRUE)
prediction <- predict.gbm(object = GBM_model
+ ,newdata = testDescr
+ ,GBM_NTREES)
> hist(prediction)
> range(prediction)
[1] -4.699324 3.043440
И adaboost:
GBM_model <- gbm.fit(
x = trainDescr
,y = trainClass
,distribution = "adaboost"
,n.trees = GBM_NTREES
,shrinkage = GBM_SHRINKAGE
,interaction.depth = GBM_DEPTH
,n.minobsinnode = GBM_MINOBS
,verbose = TRUE)
> prediction <- predict.gbm(object = GBM_model
+ ,newdata = testDescr
+ ,GBM_NTREES)
> hist(prediction)
> range(prediction)
[1] -3.0374228 0.9323279
Я делаю что-то не так, мне нужно предварительно обработать (масштабировать, отцентрировать) данные или мне нужно войти и вручную напечатать / ограничить значения с помощьючто-то вроде:
prediction <- ifelse(prediction < 0, 0, prediction)
prediction <- ifelse(prediction > 1, 1, prediction)