Да, ответ зависит от компилятора.
Быстрый эксперимент с моим компилятором (g++ 4.4.3
) показывает, что его библиотека времени выполнения сначала пытается malloc
памяти для исключения и, в случае неудачи, пытается выделить пространство в рамках "аварийного буфера" всего процесса, который живет на сегмент данных. Если это не сработает, он вызывает std::terminate()
.
Может показаться, что главная цель аварийного буфера - иметь возможность выбросить std::bad_alloc
после того, как процесс исчерпает пространство кучи (в этом случае вызов malloc
завершится ошибкой).
Соответствующая функция: __cxa_allocate_exception
:
extern "C" void *
__cxxabiv1::__cxa_allocate_exception(std::size_t thrown_size) throw()
{
void *ret;
thrown_size += sizeof (__cxa_refcounted_exception);
ret = malloc (thrown_size);
if (! ret)
{
__gnu_cxx::__scoped_lock sentry(emergency_mutex);
bitmask_type used = emergency_used;
unsigned int which = 0;
if (thrown_size > EMERGENCY_OBJ_SIZE)
goto failed;
while (used & 1)
{
used >>= 1;
if (++which >= EMERGENCY_OBJ_COUNT)
goto failed;
}
emergency_used |= (bitmask_type)1 << which;
ret = &emergency_buffer[which][0];
failed:;
if (!ret)
std::terminate ();
}
// We have an uncaught exception as soon as we allocate memory. This
// yields uncaught_exception() true during the copy-constructor that
// initializes the exception object. See Issue 475.
__cxa_eh_globals *globals = __cxa_get_globals ();
globals->uncaughtExceptions += 1;
memset (ret, 0, sizeof (__cxa_refcounted_exception));
return (void *)((char *)ret + sizeof (__cxa_refcounted_exception));
}
Я не знаю, насколько типична эта схема.