У меня есть ODE, и я решаю его с помощью NDSolve
, затем я строю решение на симплексе в 2D.
Действительный XHTML http://ompldr.org/vY2c5ag/simplex.jpg
Затем мне нужно преобразовать (выровнять или просто построить) этот симплекс в 3D по координатам (1,0,0), (0,1,0), (0,0,1), поэтому он выглядит следующим образом:
Действительный XHTML http://ompldr.org/vY2dhMg/simps.png
Я использую ParametricPlot
, чтобы сделать мой график до сих пор.Может быть, все, что мне нужно, это ParametricPlot3D
, но я не знаю, как правильно его назвать.
Вот мой код:
Remove["Global`*"];
phi[x_, y_] = (1*x*y)/(beta*x + (1 - beta)*y);
betam = 0.5;
betaf = 0.5;
betam = s;
betaf = 0.1;
sigma = 0.25;
beta = 0.3;
i = 1;
Which[i == 1, {betam = 0.40, betaf = 0.60, betam = 0.1,
betaf = 0.1, sigma = 0.25 , tmax = 10} ];
eta[x2_, y2_, p2_] = (betam + betaf + sigma)*p2 - betam*x2 -
betaf*y2 - phi[x2, y2];
syshelp = {x2'[t] == (betam + betaf + sigma)*p2[t] - betam*x2[t] -
phi[x2[t], y2[t]] - eta[x2[t], y2[t], p2[t]]*x2[t],
y2'[t] == (betaf + betam + sigma)*p2[t] - betaf*y2[t] -
phi[x2[t], y2[t]] - eta[x2[t], y2[t], p2[t]]*y2[t],
p2'[t] == -(betam + betaf + sigma)*p2[t] + phi[x2[t], y2[t]] -
eta[x2[t], y2[t], p2[t]]*p2[t]};
initialcond = {x2[0] == a, y2[0] == b, p2[0] == 1 - a - b};
tmax = 50;
solhelp =
Table[
NDSolve[
Join[initialcond, syshelp], {x2, y2, p2} , {t, 0, tmax},
AccuracyGoal -> 10, PrecisionGoal -> 15],
{a, 0.01, 1, 0.15}, {b, 0.01, 1 - a, 0.15}];
functions =
Map[{y2[t] + p2[t]/2, p2[t]*Sqrt[3]/2} /. # &, Flatten[solhelp, 2]];
ParametricPlot[Evaluate[functions], {t, 0, tmax},
PlotRange -> {{0, 1}, {0, 1}}, AspectRatio -> Automatic]
Третий день с Mathematica ...