Визуализация только сегмента / области круга, которая пересекает основной круг - PullRequest
5 голосов
/ 16 февраля 2011

Я очень люблю математику (или «математику», как большинство из вас сказали бы!), Но я не сделал этого до уровня, на котором я знаю ответ на эту проблему. У меня есть основной круг, который может иметь центральную точку на любом x и y на дисплее. Другие круги будут перемещаться по экрану по желанию, но при любом вызове метода рендеринга я хочу рендерить не только те круги, которые пересекают основной круг, но также и визуализировать сегмент этого круга, который виден внутри основного круга. Аналогия - отбрасывание тени на реальный объект, и я хочу нарисовать только ту часть этого объекта, которая «освещена».

Я хочу сделать это предпочтительно на Java, но если у вас есть сырая формула, которая будет оценена. Интересно, как можно нарисовать форму и заполнить ее в Java, я уверен, что должна быть какая-то вариация на ломаной линии с дугами или еще что-то?

Большое спасибо

Ответы [ 2 ]

4 голосов
/ 16 февраля 2011

Пусть A и B будут 2 точками пересечения (вы можете игнорировать это, когда нет, или 1 точка пересечения).

Затем вычислите длину круглого отрезка между A и B.

Имея эту информацию, вы сможете нарисовать дугу, используя метод Graphics' drawArc(...) (если я не ошибаюсь ...).

EDIT

Ну, вам даже не нужна длина отрезка круглой линии. У меня был код пересечения линии, поэтому я построил небольшой графический интерфейс вокруг него, чтобы вы могли рисовать / просматривать ARC таких пересекающихся кругов (в коде есть несколько комментариев):

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;
import java.awt.geom.Arc2D;

/**
 * @author: Bart Kiers
 */
public class GUI extends JFrame {

    private GUI() {
        super("Circle Intersection Demo");
        initGUI();
    }

    private void initGUI() {
        super.setSize(600, 640);
        super.setDefaultCloseOperation(EXIT_ON_CLOSE);
        super.setLayout(new BorderLayout(5, 5));

        final Grid grid = new Grid();

        grid.addMouseMotionListener(new MouseMotionAdapter() {
            @Override
            public void mouseDragged(MouseEvent e) {
                Point p = new Point(e.getX(), e.getY()).toCartesianPoint(grid.getWidth(), grid.getHeight());
                grid.showDraggedCircle(p);
            }
        });

        grid.addMouseListener(new MouseAdapter() {
            @Override
            public void mouseReleased(MouseEvent e) {
                Point p = new Point(e.getX(), e.getY()).toCartesianPoint(grid.getWidth(), grid.getHeight());
                grid.released(p);
            }

            @Override
            public void mousePressed(MouseEvent e) {
                Point p = new Point(e.getX(), e.getY()).toCartesianPoint(grid.getWidth(), grid.getHeight());
                grid.pressed(p);
            }
        });

        super.add(grid, BorderLayout.CENTER);
        super.setVisible(true);
    }

    public static void main(String[] args) {
        SwingUtilities.invokeLater(new Runnable() {
            @Override
            public void run() {
                new GUI();
            }
        });
    }

    private static class Grid extends JPanel {

        private Circle c1 = null;
        private Circle c2 = null;
        private Point screenClick = null;
        private Point currentPosition = null;

        public void released(Point p) {
            if (c1 == null || c2 != null) {
                c1 = new Circle(screenClick, screenClick.distance(p));
                c2 = null;
            } else {
                c2 = new Circle(screenClick, screenClick.distance(p));
            }
            screenClick = null;
            repaint();
        }

        public void pressed(Point p) {
            if(c1 != null && c2 != null) {
                c1 = null;
                c2 = null;
            }
            screenClick = p;
            repaint();
        }

        @Override
        public void paintComponent(Graphics g) {

            Graphics2D g2d = (Graphics2D) g;
            g2d.setRenderingHint(RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON);

            g2d.setColor(Color.WHITE);
            g2d.fillRect(0, 0, super.getWidth(), super.getHeight());

            final int W = super.getWidth();
            final int H = super.getHeight();
            g2d.setColor(Color.LIGHT_GRAY);
            g2d.drawLine(0, H / 2, W, H / 2); // x-axis
            g2d.drawLine(W / 2, 0, W / 2, H); // y-axis

            if (c1 != null) {
                g2d.setColor(Color.RED);
                c1.drawOn(g2d, W, H);
            }

            if (c2 != null) {
                g2d.setColor(Color.ORANGE);
                c2.drawOn(g2d, W, H);
            }

            if (screenClick != null && currentPosition != null) {
                g2d.setColor(Color.DARK_GRAY);
                g2d.setComposite(AlphaComposite.getInstance(AlphaComposite.SRC_OVER, 0.5f));
                Circle temp = new Circle(screenClick, screenClick.distance(currentPosition));
                temp.drawOn(g2d, W, H);
                currentPosition = null;
            }

            if (c1 != null && c2 != null) {

                g2d.setColor(Color.BLUE);
                g2d.setComposite(AlphaComposite.getInstance(AlphaComposite.SRC_OVER, 0.4f));
                Point[] ips = c1.intersections(c2);
                for (Point ip : ips) {
                    ip.drawOn(g, W, H);
                }
                g2d.setComposite(AlphaComposite.getInstance(AlphaComposite.SRC_OVER, 0.2f));
                if (ips.length == 2) {
                    g2d.setStroke(new BasicStroke(10.0f));
                    c1.highlightArc(g2d, ips[0], ips[1], W, H);
                }
            }

            g2d.dispose();
        }

        public void showDraggedCircle(Point p) {
            currentPosition = p;
            repaint();
        }
    }

    private static class Circle {

        public final Point center;
        public final double radius;

        public Circle(Point center, double radius) {
            this.center = center;
            this.radius = radius;
        }

        public void drawOn(Graphics g, int width, int height) {
            // translate Cartesian(x,y) to Screen(x,y)
            Point screenP = center.toScreenPoint(width, height);
            int r = (int) Math.rint(radius);
            g.drawOval((int) screenP.x - r, (int) screenP.y - r, r + r, r + r);

            // draw the center
            Point screenCenter = center.toScreenPoint(width, height);
            r = 4;
            g.drawOval((int) screenCenter.x - r, (int) screenCenter.y - r, r + r, r + r);
        }

        public void highlightArc(Graphics2D g2d, Point p1, Point p2, int width, int height) {

            double a = center.degrees(p1);
            double b = center.degrees(p2);

            // translate Cartesian(x,y) to Screen(x,y)
            Point screenP = center.toScreenPoint(width, height);
            int r = (int) Math.rint(radius);

            // find the point to start drawing our arc
            double start = Math.abs(a - b) < 180 ? Math.min(a, b) : Math.max(a, b);

            // find the minimum angle to go from `start`-angle to the other angle
            double extent = Math.abs(a - b) < 180 ? Math.abs(a - b) : 360 - Math.abs(a - b);

            // draw the arc
            g2d.draw(new Arc2D.Double((int) screenP.x - r, (int) screenP.y - r, r + r, r + r, start, extent, Arc2D.OPEN));
        }

        public Point[] intersections(Circle that) {

            // see: http://mathworld.wolfram.com/Circle-CircleIntersection.html
            double d = this.center.distance(that.center);
            double d1 = ((this.radius * this.radius) - (that.radius * that.radius) + (d * d)) / (2 * d);
            double h = Math.sqrt((this.radius * this.radius) - (d1 * d1));
            double x3 = this.center.x + (d1 * (that.center.x - this.center.x)) / d;
            double y3 = this.center.y + (d1 * (that.center.y - this.center.y)) / d;
            double x4_i = x3 + (h * (that.center.y - this.center.y)) / d;
            double y4_i = y3 - (h * (that.center.x - this.center.x)) / d;
            double x4_ii = x3 - (h * (that.center.y - this.center.y)) / d;
            double y4_ii = y3 + (h * (that.center.x - this.center.x)) / d;

            if (Double.isNaN(x4_i)) {
                // no intersections
                return new Point[0];
            }

            // create the intersection points
            Point i1 = new Point(x4_i, y4_i);
            Point i2 = new Point(x4_ii, y4_ii);

            if (i1.distance(i2) < 0.0000000001) {
                // i1 and i2 are (more or less) the same: a single intersection
                return new Point[]{i1};
            }

            // two unique intersections
            return new Point[]{i1, i2};
        }

        @Override
        public String toString() {
            return String.format("{center=%s, radius=%.2f}", center, radius);
        }
    }

    private static class Point {

        public final double x;
        public final double y;

        public Point(double x, double y) {
            this.x = x;
            this.y = y;
        }

        public double degrees(Point that) {
            double deg = Math.toDegrees(Math.atan2(that.y - this.y, that.x - this.x));
            return deg < 0.0 ? deg + 360 : deg;
        }

        public double distance(Point that) {
            double dX = this.x - that.x;
            double dY = this.y - that.y;
            return Math.sqrt(dX * dX + dY * dY);
        }

        public void drawOn(Graphics g, int width, int height) {
            // translate Cartesian(x,y) to Screen(x,y)
            Point screenP = toScreenPoint(width, height);
            int r = 7;
            g.fillOval((int) screenP.x - r, (int) screenP.y - r, r + r, r + r);
        }

        public Point toCartesianPoint(int width, int height) {
            double xCart = x - (width / 2);
            double yCart = -(y - (height / 2));
            return new Point(xCart, yCart);
        }

        public Point toScreenPoint(int width, int height) {
            double screenX = x + (width / 2);
            double screenY = -(y - (height / 2));
            return new Point(screenX, screenY);
        }

        @Override
        public String toString() {
            return String.format("(%.2f,%.2f)", x, y);
        }
    }
}

Если вы запустите графический интерфейс выше, а затем наберите 100 0 130 -80 55 180 в текстовом поле и нажмете клавишу возврата, вы увидите следующее: ...

Изменен код, так что круги можно рисовать, нажимая и перетаскивая мышь. Снимок экрана:

enter image description here

0 голосов
/ 16 февраля 2011

Предполагая, что вы знаете центральную точку и радиус двух окружностей:

  1. Рассчитайте точки, где пересекаются окружности.Это легко сделать с помощью тригонометрии.Может не быть пересечения (расстояние между центральными точками больше, чем сумма радиусов, в вашем случае игнорируемое), одна точка (расстояние между центральными точками равно сумме радиусов, игнорируемое) или два.Особые случаи: круги идентичны или движущийся круг меньше и полностью внутри основного круга.

  2. Если есть две точки пересечения: возьмите центральную точку из движущегося круга и нарисуйтедуга между этими точками.

(у меня нет кода для вас, но так как вы любите математику ...; -)

...