Алгоритм умножения субкубических матриц Штрассена с рекурсией - PullRequest
2 голосов
/ 08 марта 2012

Мне трудно осмыслить, как реализовать версию этого алгоритма Штрассена.

Для фона у меня есть следующий псевдокод для итерационной версии:

def Matrix(a,b):
    result = []

    for i in range(0,len(a)):
        new_array = []
        result.extend(new_array)
        for j in range(0,len(b[0])):
            ssum = 0
            for k in range(0,len(a[0])):
                ssum += a[i][k] * b[k][j]
            result[i][j] = ssum
    return result

У меня также есть следующий псевдокод для начальной версии «разделяй и властвуй»:

def recMatrix(x,y):
    if(len(x) == 1):
        return x[0] * y[0]

    z = []
    z[0] = recMatrix(x[0], y[0]) + recMatrix(x[1], y[2])
    z[1] = recMatrix(x[0], y[1]) + recMatrix(x[1], y[3])
    z[2] = recMatrix(x[2], y[0]) + recMatrix(x[3], y[2])
    z[3] = recMatrix(x[2], y[1]) + recMatrix(x[3], y[3])

    return z

Так что мой вопрос в том, является ли мое понимание метода «разделяй и властвуй» даже правильным, и если да, то как я могу изменить метод учета Штрассена? (Это не домашняя работа.)

(В частности, там, где мне трудно осмыслить его, речь идет о математике самого объекта до (или после) рекурсии. Т.е. где P1 = A (FH). рекурсия Штрассена заботится об арифметике (сложение и вычитание) на матрицах? У меня есть следующий псевдокод, чтобы показать, где находится мой мозг:

def recMatrix(x,y):
    if(len(x) == 1):
        return x[0] * y[0]

    z = []
    p1 = recMatrix2(x[0], (y[1] - y[3]));
    p2 = recMatrix2(y[3], (x[0] + x[1]));
    p3 = recMatrix2(y[0], (x[2] + x[3]));
    p4 = recMatrix2(x[3], (y[2] - y[0]));
    p5 = recMatrix2((x[0] + x[3]), (y[0] + y[3]));
    p6 = recMatrix2((x[1] - x[3]), (y[2] + y[3]));
    p7 = recMatrix2((x[0] - x[3]), (y[0] + y[3]));

    z[0] = p5 + p4 - p2 + p6;
    z[1] = p1 + p2;
    z[2] = p3 + p4;
    z[3] = p1 + p5 - p3 - p7;

    return z

Ответы [ 2 ]

0 голосов
/ 28 ноября 2012

Нашел реализацию, которая делает то, что я ищу ... а именно, она конкретно показывает, как / когда рекурсировать: https://github.com/MartinThoma/matrix-multiplication/blob/master/Python/strassen-algorithm.py

#!/usr/bin/python
# -*- coding: utf-8 -*-

from optparse import OptionParser
from math import ceil, log

def read(filename):
    lines = open(filename, 'r').read().splitlines()
    A = []
    B = []
    matrix = A
    for line in lines:
        if line != "":
            matrix.append(map(int, line.split("\t")))
        else:
            matrix = B
    return A, B

def printMatrix(matrix):
    for line in matrix:
        print "\t".join(map(str,line))

def add(A, B):
    n = len(A)
    C = [[0 for j in xrange(0, n)] for i in xrange(0, n)]
    for i in xrange(0, n):
        for j in xrange(0, n):
            C[i][j] = A[i][j] + B[i][j]
    return C

def subtract(A, B):
    n = len(A)
    C = [[0 for j in xrange(0, n)] for i in xrange(0, n)]
    for i in xrange(0, n):
        for j in xrange(0, n):
            C[i][j] = A[i][j] - B[i][j]
    return C

def strassenR(A, B):
    """ Implementation of the strassen algorithm, similar to 
        http://en.wikipedia.org/w/index.php?title=Strassen_algorithm&oldid=498910018#Source_code_of_the_Strassen_algorithm_in_C_language
    """
    n = len(A)

    # Trivial Case: 1x1 Matrices
    if n == 1:
        return [[A[0][0]*B[0][0]]]
    else:
        # initializing the new sub-matrices
        newSize = n/2
        a11 = [[0 for j in xrange(0, newSize)] for i in xrange(0, newSize)]
        a12 = [[0 for j in xrange(0, newSize)] for i in xrange(0, newSize)]
        a21 = [[0 for j in xrange(0, newSize)] for i in xrange(0, newSize)]
        a22 = [[0 for j in xrange(0, newSize)] for i in xrange(0, newSize)]

        b11 = [[0 for j in xrange(0, newSize)] for i in xrange(0, newSize)]
        b12 = [[0 for j in xrange(0, newSize)] for i in xrange(0, newSize)]
        b21 = [[0 for j in xrange(0, newSize)] for i in xrange(0, newSize)]
        b22 = [[0 for j in xrange(0, newSize)] for i in xrange(0, newSize)]

        aResult = [[0 for j in xrange(0, newSize)] for i in xrange(0, newSize)]
        bResult = [[0 for j in xrange(0, newSize)] for i in xrange(0, newSize)]

        # dividing the matrices in 4 sub-matrices:
        for i in xrange(0, newSize):
            for j in xrange(0, newSize):
                a11[i][j] = A[i][j];            # top left
                a12[i][j] = A[i][j + newSize];    # top right
                a21[i][j] = A[i + newSize][j];    # bottom left
                a22[i][j] = A[i + newSize][j + newSize]; # bottom right

                b11[i][j] = B[i][j];            # top left
                b12[i][j] = B[i][j + newSize];    # top right
                b21[i][j] = B[i + newSize][j];    # bottom left
                b22[i][j] = B[i + newSize][j + newSize]; # bottom right

        # Calculating p1 to p7:
         aResult = add(a11, a22)
         bResult = add(b11, b22)
        p1 = strassen(aResult, bResult) # p1 = (a11+a22) * (b11+b22)

        aResult = add(a21, a22)      # a21 + a22
        p2 = strassen(aResult, b11)  # p2 = (a21+a22) * (b11)

        bResult = subtract(b12, b22) # b12 - b22
        p3 = strassen(a11, bResult)  # p3 = (a11) * (b12 - b22)

        bResult = subtract(b21, b11) # b21 - b11
        p4 =strassen(a22, bResult)   # p4 = (a22) * (b21 - b11)

        aResult = add(a11, a12)      # a11 + a12
        p5 = strassen(aResult, b22)  # p5 = (a11+a12) * (b22)   

        aResult = subtract(a21, a11) # a21 - a11
        bResult = add(b11, b12)      # b11 + b12
        p6 = strassen(aResult, bResult) # p6 = (a21-a11) * (b11+b12)

        aResult = subtract(a12, a22) # a12 - a22
        bResult = add(b21, b22)      # b21 + b22
        p7 = strassen(aResult, bResult) # p7 = (a12-a22) * (b21+b22)

        # calculating c21, c21, c11 e c22:
        c12 = add(p3, p5) # c12 = p3 + p5
        c21 = add(p2, p4)  # c21 = p2 + p4

        aResult = add(p1, p4) # p1 + p4
        bResult = add(aResult, p7) # p1 + p4 + p7
        c11 = subtract(bResult, p5) # c11 = p1 + p4 - p5 + p7

        aResult = add(p1, p3) # p1 + p3
        bResult = add(aResult, p6) # p1 + p3 + p6
        c22 = subtract(bResult, p2) # c22 = p1 + p3 - p2 + p6

        # Grouping the results obtained in a single matrix:
        C = [[0 for j in xrange(0, n)] for i in xrange(0, n)]
        for i in xrange(0, newSize):
            for j in xrange(0, newSize):
                C[i][j] = c11[i][j]
                C[i][j + newSize] = c12[i][j]
                C[i + newSize][j] = c21[i][j]
                C[i + newSize][j + newSize] = c22[i][j]
         return C

def strassen(A, B):
    assert type(A) == list and type(B) == list
    assert len(A) == len(A[0]) == len(B) == len(B[0])

    nextPowerOfTwo = lambda n: 2**int(ceil(log(n,2)))
    n = len(A)
    m = nextPowerOfTwo(n)
    APrep = [[0 for i in xrange(m)] for j in xrange(m)]
    BPrep = [[0 for i in xrange(m)] for j in xrange(m)]
    for i in xrange(n):
        for j in xrange(n):
            APrep[i][j] = A[i][j]
            BPrep[i][j] = B[i][j]
    CPrep = strassenR(APrep, BPrep)
    C = [[0 for i in xrange(n)] for j in xrange(n)]
    for i in xrange(n):
        for j in xrange(n):
            C[i][j] = CPrep[i][j]
    return C

if __name__ == "__main__":
    parser = OptionParser()
    parser.add_option("-i", dest="filename", default="2000.in",
         help="input file with two matrices", metavar="FILE")
    (options, args) = parser.parse_args()

    A, B = read(options.filename)
    C = strassen(A, B)
    printMatrix(C)
0 голосов
/ 08 марта 2012

Проблема с последним фрагментом кода заключается в том, что он не принимает правильную подматрицу.Например, в p1 вы хотите взять верхнюю левую подматрицу x, но вы используете x[0], который является просто первой строкой x.Вам нужен код, который разбивает матрицу на 4 меньших.Или вы можете использовать математическую библиотеку, например, numpy:

In [14]: from numpy import *

In [15]: x=range(16)

In [16]: x=reshape(x,(4,4))

In [17]: x
Out[17]: 
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11],
       [12, 13, 14, 15]])

In [18]: x[0:2,0:2]
Out[18]: 
array([[0, 1],
      [4, 5]])

In [19]: x[2:4,2:4]
Out[19]: 
array([[10, 11],
       [14, 15]])
...