Нашел реализацию, которая делает то, что я ищу ... а именно, она конкретно показывает, как / когда рекурсировать: https://github.com/MartinThoma/matrix-multiplication/blob/master/Python/strassen-algorithm.py
#!/usr/bin/python
# -*- coding: utf-8 -*-
from optparse import OptionParser
from math import ceil, log
def read(filename):
lines = open(filename, 'r').read().splitlines()
A = []
B = []
matrix = A
for line in lines:
if line != "":
matrix.append(map(int, line.split("\t")))
else:
matrix = B
return A, B
def printMatrix(matrix):
for line in matrix:
print "\t".join(map(str,line))
def add(A, B):
n = len(A)
C = [[0 for j in xrange(0, n)] for i in xrange(0, n)]
for i in xrange(0, n):
for j in xrange(0, n):
C[i][j] = A[i][j] + B[i][j]
return C
def subtract(A, B):
n = len(A)
C = [[0 for j in xrange(0, n)] for i in xrange(0, n)]
for i in xrange(0, n):
for j in xrange(0, n):
C[i][j] = A[i][j] - B[i][j]
return C
def strassenR(A, B):
""" Implementation of the strassen algorithm, similar to
http://en.wikipedia.org/w/index.php?title=Strassen_algorithm&oldid=498910018#Source_code_of_the_Strassen_algorithm_in_C_language
"""
n = len(A)
# Trivial Case: 1x1 Matrices
if n == 1:
return [[A[0][0]*B[0][0]]]
else:
# initializing the new sub-matrices
newSize = n/2
a11 = [[0 for j in xrange(0, newSize)] for i in xrange(0, newSize)]
a12 = [[0 for j in xrange(0, newSize)] for i in xrange(0, newSize)]
a21 = [[0 for j in xrange(0, newSize)] for i in xrange(0, newSize)]
a22 = [[0 for j in xrange(0, newSize)] for i in xrange(0, newSize)]
b11 = [[0 for j in xrange(0, newSize)] for i in xrange(0, newSize)]
b12 = [[0 for j in xrange(0, newSize)] for i in xrange(0, newSize)]
b21 = [[0 for j in xrange(0, newSize)] for i in xrange(0, newSize)]
b22 = [[0 for j in xrange(0, newSize)] for i in xrange(0, newSize)]
aResult = [[0 for j in xrange(0, newSize)] for i in xrange(0, newSize)]
bResult = [[0 for j in xrange(0, newSize)] for i in xrange(0, newSize)]
# dividing the matrices in 4 sub-matrices:
for i in xrange(0, newSize):
for j in xrange(0, newSize):
a11[i][j] = A[i][j]; # top left
a12[i][j] = A[i][j + newSize]; # top right
a21[i][j] = A[i + newSize][j]; # bottom left
a22[i][j] = A[i + newSize][j + newSize]; # bottom right
b11[i][j] = B[i][j]; # top left
b12[i][j] = B[i][j + newSize]; # top right
b21[i][j] = B[i + newSize][j]; # bottom left
b22[i][j] = B[i + newSize][j + newSize]; # bottom right
# Calculating p1 to p7:
aResult = add(a11, a22)
bResult = add(b11, b22)
p1 = strassen(aResult, bResult) # p1 = (a11+a22) * (b11+b22)
aResult = add(a21, a22) # a21 + a22
p2 = strassen(aResult, b11) # p2 = (a21+a22) * (b11)
bResult = subtract(b12, b22) # b12 - b22
p3 = strassen(a11, bResult) # p3 = (a11) * (b12 - b22)
bResult = subtract(b21, b11) # b21 - b11
p4 =strassen(a22, bResult) # p4 = (a22) * (b21 - b11)
aResult = add(a11, a12) # a11 + a12
p5 = strassen(aResult, b22) # p5 = (a11+a12) * (b22)
aResult = subtract(a21, a11) # a21 - a11
bResult = add(b11, b12) # b11 + b12
p6 = strassen(aResult, bResult) # p6 = (a21-a11) * (b11+b12)
aResult = subtract(a12, a22) # a12 - a22
bResult = add(b21, b22) # b21 + b22
p7 = strassen(aResult, bResult) # p7 = (a12-a22) * (b21+b22)
# calculating c21, c21, c11 e c22:
c12 = add(p3, p5) # c12 = p3 + p5
c21 = add(p2, p4) # c21 = p2 + p4
aResult = add(p1, p4) # p1 + p4
bResult = add(aResult, p7) # p1 + p4 + p7
c11 = subtract(bResult, p5) # c11 = p1 + p4 - p5 + p7
aResult = add(p1, p3) # p1 + p3
bResult = add(aResult, p6) # p1 + p3 + p6
c22 = subtract(bResult, p2) # c22 = p1 + p3 - p2 + p6
# Grouping the results obtained in a single matrix:
C = [[0 for j in xrange(0, n)] for i in xrange(0, n)]
for i in xrange(0, newSize):
for j in xrange(0, newSize):
C[i][j] = c11[i][j]
C[i][j + newSize] = c12[i][j]
C[i + newSize][j] = c21[i][j]
C[i + newSize][j + newSize] = c22[i][j]
return C
def strassen(A, B):
assert type(A) == list and type(B) == list
assert len(A) == len(A[0]) == len(B) == len(B[0])
nextPowerOfTwo = lambda n: 2**int(ceil(log(n,2)))
n = len(A)
m = nextPowerOfTwo(n)
APrep = [[0 for i in xrange(m)] for j in xrange(m)]
BPrep = [[0 for i in xrange(m)] for j in xrange(m)]
for i in xrange(n):
for j in xrange(n):
APrep[i][j] = A[i][j]
BPrep[i][j] = B[i][j]
CPrep = strassenR(APrep, BPrep)
C = [[0 for i in xrange(n)] for j in xrange(n)]
for i in xrange(n):
for j in xrange(n):
C[i][j] = CPrep[i][j]
return C
if __name__ == "__main__":
parser = OptionParser()
parser.add_option("-i", dest="filename", default="2000.in",
help="input file with two matrices", metavar="FILE")
(options, args) = parser.parse_args()
A, B = read(options.filename)
C = strassen(A, B)
printMatrix(C)