Я давно использую встроенные функции Intel SSE с хорошим приростом производительности.Следовательно, я ожидал, что встроенные функции AVX еще больше ускорят мои программы.К сожалению, этого не было до сих пор.Возможно, я делаю глупую ошибку, поэтому я был бы очень признателен, если бы кто-нибудь мне помог.
Я использую Ubuntu 11.10 с g ++ 4.6.1.Я скомпилировал свою программу (см. Ниже) с
g++ simpleExample.cpp -O3 -march=native -o simpleExample
. Тестовая система имеет процессор Intel i7-2600.
Вот код, который иллюстрирует мою проблему.В моей системе я получаю вывод
98.715 ms, b[42] = 0.900038 // Naive
24.457 ms, b[42] = 0.900038 // SSE
24.646 ms, b[42] = 0.900038 // AVX
Обратите внимание, что вычисление sqrt (sqrt (sqrt (x))) было выбрано только для того, чтобы пропускная способность памяти не ограничивала скорость выполнения;это всего лишь пример.
simpleExample.cpp:
#include <immintrin.h>
#include <iostream>
#include <math.h>
#include <sys/time.h>
using namespace std;
// -----------------------------------------------------------------------------
// This function returns the current time, expressed as seconds since the Epoch
// -----------------------------------------------------------------------------
double getCurrentTime(){
struct timeval curr;
struct timezone tz;
gettimeofday(&curr, &tz);
double tmp = static_cast<double>(curr.tv_sec) * static_cast<double>(1000000)
+ static_cast<double>(curr.tv_usec);
return tmp*1e-6;
}
// -----------------------------------------------------------------------------
// Main routine
// -----------------------------------------------------------------------------
int main() {
srand48(0); // seed PRNG
double e,s; // timestamp variables
float *a, *b; // data pointers
float *pA,*pB; // work pointer
__m128 rA,rB; // variables for SSE
__m256 rA_AVX, rB_AVX; // variables for AVX
// define vector size
const int vector_size = 10000000;
// allocate memory
a = (float*) _mm_malloc (vector_size*sizeof(float),32);
b = (float*) _mm_malloc (vector_size*sizeof(float),32);
// initialize vectors //
for(int i=0;i<vector_size;i++) {
a[i]=fabs(drand48());
b[i]=0.0f;
}
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// Naive implementation
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
s = getCurrentTime();
for (int i=0; i<vector_size; i++){
b[i] = sqrtf(sqrtf(sqrtf(a[i])));
}
e = getCurrentTime();
cout << (e-s)*1000 << " ms" << ", b[42] = " << b[42] << endl;
// -----------------------------------------------------------------------------
for(int i=0;i<vector_size;i++) {
b[i]=0.0f;
}
// -----------------------------------------------------------------------------
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// SSE2 implementation
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
pA = a; pB = b;
s = getCurrentTime();
for (int i=0; i<vector_size; i+=4){
rA = _mm_load_ps(pA);
rB = _mm_sqrt_ps(_mm_sqrt_ps(_mm_sqrt_ps(rA)));
_mm_store_ps(pB,rB);
pA += 4;
pB += 4;
}
e = getCurrentTime();
cout << (e-s)*1000 << " ms" << ", b[42] = " << b[42] << endl;
// -----------------------------------------------------------------------------
for(int i=0;i<vector_size;i++) {
b[i]=0.0f;
}
// -----------------------------------------------------------------------------
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
// AVX implementation
// +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
pA = a; pB = b;
s = getCurrentTime();
for (int i=0; i<vector_size; i+=8){
rA_AVX = _mm256_load_ps(pA);
rB_AVX = _mm256_sqrt_ps(_mm256_sqrt_ps(_mm256_sqrt_ps(rA_AVX)));
_mm256_store_ps(pB,rB_AVX);
pA += 8;
pB += 8;
}
e = getCurrentTime();
cout << (e-s)*1000 << " ms" << ", b[42] = " << b[42] << endl;
_mm_free(a);
_mm_free(b);
return 0;
}
Любая помощь приветствуется!