Мне нужно было объединить эти данные в виде данных и времени отдельно, а затем вставить и отформатировать
location$dt.time <- as.POSIXct(paste(location$date, location$time),
format="%m/%d/%Y %H:%M")
И то же самое для weather
Затем для каждого значения date.timeв location
найдите запись в weather
, которая имеет самые низкие абсолютные значения для разницы во времени:
sapply(location$dt.time, function(x) which.min(abs(difftime(x, weather$dt.time))))
# [1] 2 3 8 9
cbind(location, weather[ sapply(location$dt.time,
function(x) which.min(abs(difftime(x, weather$dt.time)))), ])
x y date time dt.time date time temp wind dt.time
2 1 3 01/02/2003 18:00 2003-01-02 18:00:00 01/02/2003 16:34 10 16 2003-01-02 16:34:00
3 2 3 01/02/2003 19:00 2003-01-02 19:00:00 01/02/2003 20:55 14 22 2003-01-02 20:55:00
8 3 4 01/03/2003 23:00 2003-01-03 23:00:00 01/03/2003 23:44 2 33 2003-01-03 23:44:00
9 2 5 01/04/2003 02:00 2003-01-04 02:00:00 01/04/2003 01:55 6 22 2003-01-04 01:55:00
cbind(location, weather[
sapply(location$dt.time,
function(x) which.min(abs(difftime(x, weather$dt.time)))), ])[ #pick columns
c(1,2,5,8,9,10)]
x y dt.time temp wind dt.time.1
2 1 3 2003-01-02 18:00:00 10 16 2003-01-02 16:34:00
3 2 3 2003-01-02 19:00:00 14 22 2003-01-02 20:55:00
8 3 4 2003-01-03 23:00:00 2 33 2003-01-03 23:44:00
9 2 5 2003-01-04 02:00:00 6 22 2003-01-04 01:55:00
Мои ответы кажутся немного другими, чем ваши, но другой читатель уже поставил под сомнение ваши способности делатьправильное соответствие вручную.