Вы можете почувствовать сложность вывода компилятора, компилировав его в аннотированный PTX, например:
nvcc -ptx -Xopencc="-LIST:source=on" branching.cu
, который выдаст файл ассемблера PTX с исходным кодом C внутри него в виде комментариев:
.entry _Z11branchTest0PfS_S_ (
.param .u64 __cudaparm__Z11branchTest0PfS_S__a,
.param .u64 __cudaparm__Z11branchTest0PfS_S__b,
.param .u64 __cudaparm__Z11branchTest0PfS_S__d)
{
.reg .u16 %rh<4>;
.reg .u32 %r<5>;
.reg .u64 %rd<10>;
.reg .f32 %f<5>;
.loc 16 1 0
// 1 __global__ void branchTest0(float *a, float *b, float *d)
$LDWbegin__Z11branchTest0PfS_S_:
.loc 16 7 0
// 3 unsigned int tidx = threadIdx.x + blockDim.x*blockIdx.x;
// 4 float aval = a[tidx], bval = b[tidx];
// 5 float z0 = (aval > bval) ? aval : bval;
// 6
// 7 d[tidx] = z0;
mov.u16 %rh1, %ctaid.x;
mov.u16 %rh2, %ntid.x;
mul.wide.u16 %r1, %rh1, %rh2;
cvt.u32.u16 %r2, %tid.x;
add.u32 %r3, %r2, %r1;
cvt.u64.u32 %rd1, %r3;
mul.wide.u32 %rd2, %r3, 4;
ld.param.u64 %rd3, [__cudaparm__Z11branchTest0PfS_S__a];
add.u64 %rd4, %rd3, %rd2;
ld.global.f32 %f1, [%rd4+0];
ld.param.u64 %rd5, [__cudaparm__Z11branchTest0PfS_S__b];
add.u64 %rd6, %rd5, %rd2;
ld.global.f32 %f2, [%rd6+0];
max.f32 %f3, %f1, %f2;
ld.param.u64 %rd7, [__cudaparm__Z11branchTest0PfS_S__d];
add.u64 %rd8, %rd7, %rd2;
st.global.f32 [%rd8+0], %f3;
.loc 16 8 0
// 8 }
exit;
$LDWend__Z11branchTest0PfS_S_:
} // _Z11branchTest0PfS_S_
Обратите внимание, что это ничего не говорит вам напрямую об использовании регистра, потому что PTX использует статическое одиночное назначение, но показывает, что ассемблер предоставляется в качестве входных данных и как это связано с вашим исходным кодом. С помощью инструментария CUDA 4.0 вы можете скомпилировать C в файл кубина для архитектуры Fermi:
$ nvcc -cubin -arch=sm_20 -Xptxas="-v" branching.cu
ptxas info : Compiling entry function '_Z11branchTest1PfS_S_' for 'sm_20'
ptxas info : Function properties for _Z11branchTest1PfS_S_
0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
и используйте утилиту cuobjdump
для дизассемблирования машинного кода, который создает ассемблер.
$ cuobjdump -sass branching.cubin
code for sm_20
Function : _Z11branchTest0PfS_S_
/*0000*/ /*0x00005de428004404*/ MOV R1, c [0x1] [0x100];
/*0008*/ /*0x94001c042c000000*/ S2R R0, SR_CTAid_X;
/*0010*/ /*0x84009c042c000000*/ S2R R2, SR_Tid_X;
/*0018*/ /*0x10015de218000000*/ MOV32I R5, 0x4;
/*0020*/ /*0x2000dc0320044000*/ IMAD.U32.U32 R3, R0, c [0x0] [0x8], R2;
/*0028*/ /*0x10311c435000c000*/ IMUL.U32.U32.HI R4, R3, 0x4;
/*0030*/ /*0x80319c03200b8000*/ IMAD.U32.U32 R6.CC, R3, R5, c [0x0] [0x20];
/*0038*/ /*0x9041dc4348004000*/ IADD.X R7, R4, c [0x0] [0x24];
/*0040*/ /*0xa0321c03200b8000*/ IMAD.U32.U32 R8.CC, R3, R5, c [0x0] [0x28];
/*0048*/ /*0x00609c8584000000*/ LD.E R2, [R6];
/*0050*/ /*0xb0425c4348004000*/ IADD.X R9, R4, c [0x0] [0x2c];
/*0058*/ /*0xc0329c03200b8000*/ IMAD.U32.U32 R10.CC, R3, R5, c [0x0] [0x30];
/*0060*/ /*0x00801c8584000000*/ LD.E R0, [R8];
/*0068*/ /*0xd042dc4348004000*/ IADD.X R11, R4, c [0x0] [0x34];
/*0070*/ /*0x00201c00081e0000*/ FMNMX R0, R2, R0, !pt;
/*0078*/ /*0x00a01c8594000000*/ ST.E [R10], R0;
/*0080*/ /*0x00001de780000000*/ EXIT;
......................................
Обычно можно проследить от ассемблера до PTX и получить хотя бы приблизительное представление о «жадных» участках кода. Сказав все это, управление давлением регистра является одним из наиболее сложных аспектов программирования CUDA на данный момент. Если / когда NVIDIA когда-либо документирует свой формат ELF для кода устройства, я считаю, что подходящий инструмент для анализа кода был бы отличным проектом для кого-то.