Я создал для вас "ленивую" реализацию, более общую (то есть может перечислять подмножества любого размера).
Это лениво в том смысле, что не требуется, чтобы все элементы исходного набора (или все подмножества) в памяти одновременно, но это не очень эффективно: вызов next()
для итератора все еще может означать итерацию по исходный набор k-1
раз (если k
- требуемый размер подмножества) - к счастью, не каждый раз, в большинстве случаев нам нужен только один next()
на один итератор (по крайней мере, когда k
мало по сравнению с n
, размер базового набора). И, конечно же, нам все еще нужно иметь в памяти элементы k
.
Мы также должны предположить, что все итераторы используют один и тот же порядок, если базовый набор не изменяется (и мы не хотим, чтобы он менялся во время выполнения одной из наших итераций). Это было бы намного проще, если бы интерфейс Iterator
позволял клонировать итератор, то есть запускать второй итератор в точке, в которой сейчас находится один итератор. (Мы реализуем это сейчас с помощью метода scrollTo
.) Для отсортированных Карт это должно быть намного проще (ждите обновления там).
package de.fencing_game.paul.examples;
import java.util.*;
/**
* An unmodifiable set of all subsets of a given size of a given (finite) set.
*
* Inspired by /5306340/ideya-polucheniya-unikalnyh-par-elementov-kollektsii-v-java
*/
public class FiniteSubSets<X>
extends AbstractSet<Set<X>> {
private final Set<X> baseSet;
private final int subSize;
/**
* creates a set of all subsets of a given size of a given set.
*
* @param baseSet the set whose subsets should be in this set.
* For this to work properly, the baseSet's iterators should iterate
* every time in the same order, as long as one iteration of this set
* is in progress.
*
* The baseSet does not need to be immutable, but it should not change
* while an iteration of this set is in progress.
* @param subSetSize
*/
public FiniteSubSets(Set<X> baseSet, int subSetSize) {
this.baseSet = baseSet;
this.subSize = subSetSize;
}
/**
* calculates the size of this set.
*
* This is the binomial coefficient.
*/
public int size() {
int baseSize = baseSet.size();
long size = binomialCoefficient(baseSize, subSize);
return (int)Math.min(size, Integer.MAX_VALUE);
}
public Iterator<Set<X>> iterator() {
if(subSize == 0) {
// our IteratorImpl does not work for k == 0.
return Collections.singleton(Collections.<X>emptySet()).iterator();
}
return new IteratorImpl();
}
/**
* checks if some object is in this set.
*
* This implementation is optimized compared to
* the implementation from AbstractSet.
*/
public boolean contains(Object o) {
return o instanceof Set &&
((Set)o).size() == subSize &&
baseSet.containsAll((Set)o);
}
/**
* The implementation of our iterator.
*/
private class IteratorImpl implements Iterator<Set<X>> {
/**
* A stack of iterators over the base set.
* We only ever manipulate the top one, the ones below only
* after the top one came to its end.
* The stack should be always full, except in the constructor or
* inside the {@link #step} method.
*/
private Deque<Iterator<X>> stack = new ArrayDeque<Iterator<X>>(subSize);
/**
* a linked list maintaining the current state of the iteration, i.e.
* the next subset. It is null when there is no next subset, but
* otherwise it should have always full length subSize (except when
* inside step method or constructor).
*/
private Node current;
/**
* constructor to create the stack of iterators and initial
* node.
*/
IteratorImpl() {
try {
for(int i = 0; i < subSize; i++) {
initOneIterator();
}
}
catch(NoSuchElementException ex) {
current = null;
}
// System.err.println("IteratorImpl() End, current: " + current);
}
/**
* initializes one level of iterator and node.
* Only called from the constructor.
*/
private void initOneIterator() {
Iterator<X> it = baseSet.iterator();
if(current != null) {
scrollTo(it, current.element);
}
X element = it.next();
current = new Node(current, element);
stack.push(it);
}
/**
* gets the next element from the set (i.e. the next
* subset of the base set).
*/
public Set<X> next() {
if(current == null) {
throw new NoSuchElementException();
}
Set<X> result = new SubSetImpl(current);
step();
return result;
}
/**
* returns true if there are more elements.
*/
public boolean hasNext() {
return current != null;
}
/** throws an exception. */
public void remove() {
throw new UnsupportedOperationException();
}
/**
* Steps the iterator on the top of the stack to the
* next element, and store this in {@link #current}.
*
* If this iterator is already the end, we recursively
* step the iterator to the next element.
*
* If there are no more subsets at all, we set {@link #current}
* to null.
*/
void step() {
Iterator<X> lastIt = stack.peek();
current = current.next;
while(!lastIt.hasNext()) {
if(current == null) {
// no more elements in the first level iterator
// ==> no more subsets at all.
return;
}
// last iterator has no more elements
// step iterator before and recreate last iterator.
stack.pop();
assert current != null;
step();
if(current == null) {
// after recursive call ==> at end of iteration.
return;
}
assert current != null;
// new iterator at the top level
lastIt = baseSet.iterator();
if(!scrollTo(lastIt, current.element)) {
// Element not available anymore => some problem occured
current = null;
throw new ConcurrentModificationException
("Element " + current.element + " not found!");
}
stack.push(lastIt);
}
// now we know the top iterator has more elements
// ==> put the next one in `current`.
X lastElement = lastIt.next();
current = new Node(current, lastElement);
} // step()
}
/**
* helper method which scrolls an iterator to some element.
* @return true if the element was found, false if we came
* to the end of the iterator without finding the element.
*/
private static <Y> boolean scrollTo(Iterator<? extends Y> it, Y element) {
while(it.hasNext()) {
Y itEl = it.next();
if(itEl.equals(element)) {
return true;
}
}
return false;
}
/**
* implementation of our subsets.
* These sets are really immutable (not only unmodifiable).
*
* We implement them with a simple linked list of nodes.
*/
private class SubSetImpl extends AbstractSet<X>
{
private final Node node;
SubSetImpl(Node n) {
this.node = n;
}
/**
* the size of this set.
*/
public int size() {
return subSize;
}
/**
* an iterator over our linked list.
*/
public Iterator<X> iterator() {
return new Iterator<X>() {
private Node current = SubSetImpl.this.node;
public X next() {
if(current == null) {
throw new NoSuchElementException();
}
X result = current.element;
current = current.next;
return result;
}
public boolean hasNext() {
return current != null;
}
public void remove() {
throw new UnsupportedOperationException();
}
};
}
}
/**
* A simple immutable node class, used to implement our iterator and
* the sets created by them.
*
* Two "neighbouring" subsets (i.e. which
* only differ by the first element) share most of the linked list,
* differing only in the first node.
*/
private class Node {
Node(Node n, X e) {
this.next = n;
this.element = e;
}
final X element;
final Node next;
public String toString() {
return "[" + element + "]==>" + next;
}
}
/**
* Calculates the binomial coefficient B(n,k), i.e.
* the number of subsets of size k in a set of size n.
*
* The algorithm is taken from the <a href="http://de.wikipedia.org/wiki/Binomialkoeffizient#Algorithmus_zur_effizienten_Berechnung">german wikipedia article</a>.
*/
private static long binomialCoefficient(int n, int k) {
if(k < 0 || n < k ) {
return 0;
}
final int n_minus_k = n - k;
if (k > n/2) {
return binomialCoefficient(n, n_minus_k);
}
long prod = 1;
for(int i = 1; i <= k; i++) {
prod = prod * (n_minus_k + i) / i;
}
return prod;
}
/**
* Demonstrating test method. We print all subsets (sorted by size) of
* a set created from the command line parameters, or an example set, if
* there are no parameters.
*/
public static void main(String[] params) {
Set<String> baseSet =
new HashSet<String>(params.length == 0 ?
Arrays.asList("Hello", "World", "this",
"is", "a", "Test"):
Arrays.asList(params));
System.out.println("baseSet: " + baseSet);
for(int i = 0; i <= baseSet.size()+1; i++) {
Set<Set<String>> pSet = new FiniteSubSets<String>(baseSet, i);
System.out.println("------");
System.out.println("subsets of size "+i+":");
int count = 0;
for(Set<String> ss : pSet) {
System.out.println(" " + ss);
count++;
}
System.out.println("in total: " + count + ", " + pSet.size());
}
}
}
Как всегда для моих больших примеров кода, этот можно найти в моем репозитории github stackoverflow-examples тоже.