Учитывая, что вы ищете производительность, похоже, стоит предложить решение data.table
.
Существует функция rbindlist
, которая является same
, но намного быстрее, чем do.call(rbind, list)
library(data.table)
X <- replicate(50000, data.table(a=rnorm(5), b=1:5), simplify=FALSE)
system.time(rbindlist.data.table <- rbindlist(X))
## user system elapsed
## 0.00 0.01 0.02
Это также очень быстро для списка data.frame
Xdf <- replicate(50000, data.frame(a=rnorm(5), b=1:5), simplify=FALSE)
system.time(rbindlist.data.frame <- rbindlist(Xdf))
## user system elapsed
## 0.03 0.00 0.03
Для сравнения
system.time(docall <- do.call(rbind, Xdf))
## user system elapsed
## 50.72 9.89 60.88
И какой-то правильный бенчмаркинг
library(rbenchmark)
benchmark(rbindlist.data.table = rbindlist(X),
rbindlist.data.frame = rbindlist(Xdf),
docall = do.call(rbind, Xdf),
replications = 5)
## test replications elapsed relative user.self sys.self
## 3 docall 5 276.61 3073.444445 264.08 11.4
## 2 rbindlist.data.frame 5 0.11 1.222222 0.11 0.0
## 1 rbindlist.data.table 5 0.09 1.000000 0.09 0.0
и против решений @ JoshuaUlrich
benchmark(use.rbl.dt = rbl.dt(X),
use.rbl.ju = rbl.ju (Xdf),
use.rbindlist =rbindlist(X) ,
replications = 5)
## test replications elapsed relative user.self
## 3 use.rbindlist 5 0.10 1.0 0.09
## 1 use.rbl.dt 5 0.10 1.0 0.09
## 2 use.rbl.ju 5 0.33 3.3 0.31
Я не уверен, что вам действительно нужно использовать as.data.frame
, потому что data.table
наследует класс data.frame