Данные обучения и тестирования должны иметь одинаковое количество атрибутов. Так что в вашем случае, даже если вы не знаете фактический класс тестовых данных, просто используйте фиктивные значения:
ytest = ones(size(xtest,1),1); %# dummy class values for test data
train = [xtrain ytrain];
test = [xtest ytest];
save ('train.txt','train','-ASCII');
save ('test.txt','test','-ASCII');
Не забудьте преобразовать его в номинальный атрибут при загрузке набора тестовых данных (как вы это делали для набора обучающих данных):
filter = weka.filters.unsupervised.attribute.NumericToNominal();
filter.setOptions( weka.core.Utils.splitOptions('-R last') );
filter.setInputFormat(test);
test = filter.useFilter(test, filter);
Наконец, вы можете вызвать обученный классификатор J48 для прогнозирования значений классов для тестовых экземпляров:
classes = zeros(numInst,1);
for i=1:numInst
classes(i) = classifier.classifyInstance(test.instance(i-1));
end
EDIT
Трудно сказать, не зная данных, с которыми вы работаете ..
Итак, позвольте мне проиллюстрировать полный пример. Я собираюсь создать наборы данных в MATLAB из данных Fisher Iris (4 атрибута, 150 экземпляров, 3 класса).
%# load dataset (data + labels)
load fisheriris
X = meas;
Y = grp2idx(species);
%# partition the data into training/testing
c = cvpartition(Y, 'holdout',1/3);
xtrain = X(c.training,:);
ytrain = Y(c.training);
xtest = X(c.test,:);
ytest = Y(c.test); %# or dummy values
%# save as space-delimited text file
train = [xtrain ytrain];
test = [xtest ytest];
save train.txt train -ascii
save test.txt test -ascii
Я должен упомянуть здесь, что важно убедиться, что значения классов полностью представлены в каждом из двух наборов данных, прежде чем использовать фильтр NumericToNominal
. В противном случае наборы поездов и тестов могут быть несовместимы . Я имею в виду, что у вас должен быть хотя бы один экземпляр из каждого значения класса в каждом. Таким образом, если вы используете фиктивные значения, возможно, мы можем сделать это:
ytest = ones(size(xtest,1),1);
v = unique(Y);
ytest(1:numel(v)) = v;
Далее, давайте прочитаем вновь созданные файлы, используя Weka API. Мы преобразуем последний атрибут из числового в номинальный (чтобы включить классификацию):
%# read train/test files using Weka
fName = 'train.txt';
loader = weka.core.converters.MatlabLoader();
loader.setFile( java.io.File(fName) );
train = loader.getDataSet();
train.setClassIndex( train.numAttributes()-1 );
fName = 'test.txt';
loader = weka.core.converters.MatlabLoader();
loader.setFile( java.io.File(fName) );
test = loader.getDataSet();
test.setClassIndex( test.numAttributes()-1 );
%# convert last attribute (class) from numeric to nominal
filter = weka.filters.unsupervised.attribute.NumericToNominal();
filter.setOptions( weka.core.Utils.splitOptions('-R last') );
filter.setInputFormat(train);
train = filter.useFilter(train, filter);
filter = weka.filters.unsupervised.attribute.NumericToNominal();
filter.setOptions( weka.core.Utils.splitOptions('-R last') );
filter.setInputFormat(test);
test = filter.useFilter(test, filter);
Теперь мы обучаем классификатор J48 и используем его для прогнозирования класса тестовых экземпляров:
%# train a J48 tree
classifier = weka.classifiers.trees.J48();
classifier.setOptions( weka.core.Utils.splitOptions('-c last -C 0.25 -M 2') );
classifier.buildClassifier( train );
%# classify test instances
numInst = test.numInstances();
pred = zeros(numInst,1);
predProbs = zeros(numInst, train.numClasses());
for i=1:numInst
pred(i) = classifier.classifyInstance( test.instance(i-1) );
predProbs(i,:) = classifier.distributionForInstance( test.instance(i-1) );
end
Наконец, мы оцениваем производительность обученной модели по тестовым данным (это должно выглядеть примерно так, как вы видите в Weka Explorer). Очевидно, что это имеет смысл, только если у экземпляров теста есть истинное значение класса (не фиктивные значения):
eval = weka.classifiers.Evaluation(train);
eval.evaluateModel(classifier, test, javaArray('java.lang.Object',1));
fprintf('=== Run information ===\n\n')
fprintf('Scheme: %s %s\n', ...
char(classifier.getClass().getName()), ...
char(weka.core.Utils.joinOptions(classifier.getOptions())) )
fprintf('Relation: %s\n', char(train.relationName))
fprintf('Instances: %d\n', train.numInstances)
fprintf('Attributes: %d\n\n', train.numAttributes)
fprintf('=== Classifier model ===\n\n')
disp( char(classifier.toString()) )
fprintf('=== Summary ===\n')
disp( char(eval.toSummaryString()) )
disp( char(eval.toClassDetailsString()) )
disp( char(eval.toMatrixString()) )
Вывод в MATLAB для приведенного выше примера:
=== Run information ===
Scheme: weka.classifiers.trees.J48 -C 0.25 -M 2
Relation: train.txt-weka.filters.unsupervised.attribute.NumericToNominal-Rlast
Instances: 100
Attributes: 5
=== Classifier model ===
J48 pruned tree
------------------
att_4 <= 0.6: 1 (33.0)
att_4 > 0.6
| att_3 <= 4.8
| | att_4 <= 1.6: 2 (32.0)
| | att_4 > 1.6: 3 (3.0/1.0)
| att_3 > 4.8: 3 (32.0)
Number of Leaves : 4
Size of the tree : 7
=== Summary ===
Correctly Classified Instances 46 92 %
Incorrectly Classified Instances 4 8 %
Kappa statistic 0.8802
Mean absolute error 0.0578
Root mean squared error 0.2341
Relative absolute error 12.9975 %
Root relative squared error 49.6536 %
Coverage of cases (0.95 level) 92 %
Mean rel. region size (0.95 level) 34 %
Total Number of Instances 50
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall F-Measure ROC Area Class
1 0 1 1 1 1 1
0.765 0 1 0.765 0.867 0.879 2
1 0.118 0.8 1 0.889 0.938 3
Weighted Avg. 0.92 0.038 0.936 0.92 0.919 0.939
=== Confusion Matrix ===
a b c <-- classified as
17 0 0 | a = 1
0 13 4 | b = 2
0 0 16 | c = 3