Вот способ абстрагировать операторов, который является относительно безболезненным.
abstract class MathProvider<T>
{
public abstract T Divide(T a, T b);
public abstract T Multiply(T a, T b);
public abstract T Add(T a, T b);
public abstract T Negate(T a);
public virtual T Subtract(T a, T b)
{
return Add(a, Negate(b));
}
}
class DoubleMathProvider : MathProvider<double>
{
public override double Divide(double a, double b)
{
return a / b;
}
public override double Multiply(double a, double b)
{
return a * b;
}
public override double Add(double a, double b)
{
return a + b;
}
public override double Negate(double a)
{
return -a;
}
}
class IntMathProvider : MathProvider<int>
{
public override int Divide(int a, int b)
{
return a / b;
}
public override int Multiply(int a, int b)
{
return a * b;
}
public override int Add(int a, int b)
{
return a + b;
}
public override int Negate(int a)
{
return -a;
}
}
class Fraction<T>
{
static MathProvider<T> _math;
// Notice this is a type constructor. It gets run the first time a
// variable of a specific type is declared for use.
// Having _math static reduces overhead.
static Fraction()
{
// This part of the code might be cleaner by once
// using reflection and finding all the implementors of
// MathProvider and assigning the instance by the one that
// matches T.
if (typeof(T) == typeof(double))
_math = new DoubleMathProvider() as MathProvider<T>;
else if (typeof(T) == typeof(int))
_math = new IntMathProvider() as MathProvider<T>;
// ... assign other options here.
if (_math == null)
throw new InvalidOperationException(
"Type " + typeof(T).ToString() + " is not supported by Fraction.");
}
// Immutable impementations are better.
public T Numerator { get; private set; }
public T Denominator { get; private set; }
public Fraction(T numerator, T denominator)
{
// We would want this to be reduced to simpilest terms.
// For that we would need GCD, abs, and remainder operations
// defined for each math provider.
Numerator = numerator;
Denominator = denominator;
}
public static Fraction<T> operator +(Fraction<T> a, Fraction<T> b)
{
return new Fraction<T>(
_math.Add(
_math.Multiply(a.Numerator, b.Denominator),
_math.Multiply(b.Numerator, a.Denominator)),
_math.Multiply(a.Denominator, b.Denominator));
}
public static Fraction<T> operator -(Fraction<T> a, Fraction<T> b)
{
return new Fraction<T>(
_math.Subtract(
_math.Multiply(a.Numerator, b.Denominator),
_math.Multiply(b.Numerator, a.Denominator)),
_math.Multiply(a.Denominator, b.Denominator));
}
public static Fraction<T> operator /(Fraction<T> a, Fraction<T> b)
{
return new Fraction<T>(
_math.Multiply(a.Numerator, b.Denominator),
_math.Multiply(a.Denominator, b.Numerator));
}
// ... other operators would follow.
}
Если вам не удастся реализовать используемый вами тип, вы получите сбой во время выполнения, а не во время компиляции (что плохо). Определение MathProvider<T>
реализаций всегда будет одинаковым (тоже плохим). Я бы посоветовал вам просто избегать этого в C # и использовать F # или другой язык, более подходящий для этого уровня абстракции.
Редактировать: Исправлены определения сложения и вычитания для Fraction<T>
.
Еще одна интересная и простая вещь - реализовать MathProvider, который работает с абстрактным синтаксическим деревом. Эта идея сразу указывает на такие вещи, как автоматическое дифференцирование: http://conal.net/papers/beautiful-differentiation/