Поскольку я не получил ответ от форума CUDA, попробуйте его здесь:
После выполнения нескольких программ в CUDA я начал получать их эффективную пропускную способность. Однако у меня есть некоторые странные результаты, например, в следующем коде, где я могу суммировать все элементы в векторе (независимо от измерения), пропускная способность с кодом развертывания и «нормальный» код, кажется, имеют тот же средний результат около 3000 Гбит / с)
Я не знаю, если я делаю что-то не так (AFAIK программа работает нормально), но из того, что я читал до сих пор, код Unroll должен иметь более высокую пропускную способность.
#include <stdio.h>
#include <limits.h>
#include <stdlib.h>
#include <math.h>
#define elements 1000
#define blocksize 16
__global__ void vecsumkernel(float*input, float*output,int nelements){
__shared__ float psum[blocksize];
int tid=threadIdx.x;
if(tid + blockDim.x * blockIdx.x < nelements)
psum[tid]=input[tid+blockDim.x*blockIdx.x];
else
psum[tid]=0.0f;
__syncthreads();
//WITHOUT UNROLL
int stride;
for(stride=blockDim.x/2;stride>0;stride>>=1){
if(tid<stride)
psum[tid]+=psum[tid+stride];
__syncthreads();
}
if(tid==0)
output[blockIdx.x]=psum[0];
//WITH UNROLL
/*
if(blocksize>=512 && tid<256) psum[tid]+=psum[tid+256];__syncthreads();
if(blocksize>=256 && tid<128) psum[tid]+=psum[tid+128];__syncthreads();
if(blocksize>=128 && tid<64) psum[tid]+=psum[tid+64];__syncthreads();
if (tid < 32) {
if (blocksize >= 64) psum[tid] += psum[tid + 32];
if (blocksize >= 32) psum[tid] += psum[tid + 16];
if (blocksize >= 16) psum[tid] += psum[tid + 8];
if (blocksize >= 8) psum[tid] += psum[tid + 4];
if (blocksize >= 4) psum[tid] += psum[tid + 2];
if (blocksize >= 2) psum[tid] += psum[tid + 1];
}*/
if(tid==0)
output[blockIdx.x]=psum[0];
}
void vecsumv2(float*input, float*output, int nelements){
dim3 dimBlock(blocksize,1,1);
int i;
for(i=((int)ceil((double)(nelements)/(double)blocksize))*blocksize;i>1;i(int)ceil((double)i/(double)blocksize)){
dim3 dimGrid((int)ceil((double)i/(double)blocksize),1,1);
printf("\ni=%d\ndimgrid=%u\n ",i,dimGrid.x);
vecsumkernel<<<dimGrid,dimBlock>>>(i==((int)ceil((double)(nelements)/(double)blocksize))*blocksize ?input:output,output,i==((int)ceil((double)(nelements)/(double)blocksize))*blocksize ? elements:i);
}
}
void printVec(float*vec,int dim){
printf("\n{");
for(int i=0;i<dim;i++)
printf("%f ",vec[i]);
printf("}\n");
}
int main(){
cudaEvent_t evstart, evstop;
cudaEventCreate(&evstart);
cudaEventCreate(&evstop);
float*input=(float*)malloc(sizeof(float)*(elements));
for(int i=0;i<elements;i++)
input[i]=(float) i;
float*output=(float*)malloc(sizeof(float)*elements);
float *input_d,*output_d;
cudaMalloc((void**)&input_d,elements*sizeof(float));
cudaMalloc((void**)&output_d,elements*sizeof(float));
cudaMemcpy(input_d,input,elements*sizeof(float),cudaMemcpyHostToDevice);
cudaEventRecord(evstart,0);
vecsumv2(input_d,output_d,elements);
cudaEventRecord(evstop,0);
cudaEventSynchronize(evstop);
float time;
cudaEventElapsedTime(&time,evstart,evstop);
printf("\ntempo gasto:%f\n",time);
float Bandwidth=((1000*4*2)/10^9)/time;
printf("\n Bandwidth:%f Gb/s\n",Bandwidth);
cudaMemcpy(output,output_d,elements*sizeof(float),cudaMemcpyDeviceToHost);
cudaFree(input_d);
cudaFree(output_d);
printf("soma do vector");
printVec(output,4);
}