Как упоминал Рамнатх, пакет pcse будет делать то же, что и xtpcse
Stata. В качестве альтернативы, вы можете использовать функцию vcovBK()
из пакета plm. Если вы выберете последний вариант, убедитесь, что вы используете параметр cluster='time'
, о чем говорится в статье Beck & Katz (1995) предлагает и то, что реализует команда Stata.
Пакет pcse
работает хорошо, но есть некоторые проблемы, которые делают множество интуитивно понятных пользовательских вводов неприемлемыми, особенно если ваш набор данных несбалансирован. Возможно, вы захотите попробовать переписать функцию, которую я кодировал некоторое время назад. Просто загрузите пакет pcse
, загрузите функцию pcse2
и используйте ее, следуя инструкциям в документации pcse. ИМХО, функция, вставленная ниже, является более чистой, более гибкой и более надежной, чем та, которую предоставляют pcse
люди. Простые тесты также предполагают, что моя версия может быть в 5-10 раз быстрее, чем их, что может иметь значение для больших наборов данных.
Удачи!
library(Matrix)
pcse2 <- function(object, groupN, groupT, pairwise=TRUE){
## Extract basic model info
groupT <- tail(as.character((match.call()$groupT)), 1)
groupN <- tail(as.character((match.call()$groupN)), 1)
dat <- eval(parse(text=object$call$data))
## Sanity checks
if(!"lm" %in% class(object)){stop("Formula object must be of class 'lm'.")}
if(!groupT %in% colnames(dat)){stop(paste(groupT, 'was not found in data', object$call$data))}
if(!groupN %in% colnames(dat)){stop(paste(groupN, 'was not found in data', object$call$data))}
if(anyDuplicated(paste(dat[,groupN], dat[,groupT]))>0){stop(paste('There are duplicate groupN-groupT observations in', object$call$data))}
if(length(dat[is.na(dat[,groupT]),groupT])>0){stop('There are missing unit indices in the data.')}
if(length(dat[is.na(dat[,groupN]),groupN])>0){stop('There are missing time indices in the data.')}
## Expand model frame to include groupT, groupN, resid columns.
f <- as.formula(object$call$formula)
f.expanded <- update.formula(f, paste(". ~ .", groupN, groupT, sep=" + "))
dat.pcse <- model.frame(f.expanded, dat)
dat.pcse$e <- resid(object)
## Extract basic model info (part II)
N <- length(unique(dat.pcse[,groupN]))
T <- length(unique(dat.pcse[,groupT]))
nobs <- nrow(dat.pcse)
is.balanced <- length(resid(object)) == N * T
## If balanced dataset, calculate as in Beck & Katz (1995)
if(is.balanced){
dat.pcse <- dat.pcse[order(dat.pcse[,groupN], dat.pcse[,groupT]),]
X <- model.matrix(f, dat.pcse)
E <- t(matrix(dat.pcse$e, N, T, byrow=TRUE))
Omega <- kronecker((crossprod(E) / T), Matrix(diag(1, T)) )
## If unbalanced and pairwise, calculate as in Franzese (1996)
}else if(pairwise==TRUE){
## Rectangularize
rectangle <- expand.grid(unique(dat.pcse[,groupN]), unique(dat.pcse[,groupT]))
names(rectangle) <- c(groupN, groupT)
rectangle <- merge(rectangle, dat.pcse, all.x=TRUE)
rectangle <- rectangle[order(rectangle[,groupN], rectangle[,groupT]),]
valid <- ifelse(is.na(rectangle$e),0,1)
rectangle[is.na(rectangle)] <- 0
X <- model.matrix(f, rectangle)
X[valid==0,1] <- 0
## Calculate pcse
E <- crossprod(t(matrix(rectangle$e, N, T, byrow=TRUE)))
V <- crossprod(t(matrix(valid, N, T, byrow=TRUE)))
if (length(V[V==0]) > 0){stop("Error! A CS-unit exists without any obs or without any obs in a common period with another CS-unit. You must remove that unit from the data passed to pcse().")}
Omega <- kronecker(E/V, Matrix(diag(1, T)))
## If unbalanced and casewise, caluate based on largest rectangular subset of data
}else{
## Rectangularize
rectangle <- expand.grid(unique(dat.pcse[,groupN]), unique(dat.pcse[,groupT]))
names(rectangle) <- c(groupN, groupT)
rectangle <- merge(rectangle, dat.pcse, all.x=TRUE)
rectangle <- rectangle[order(rectangle[,groupN], rectangle[,groupT]),]
valid <- ifelse(is.na(rectangle$e),0,1)
rectangle[is.na(rectangle)] <- 0
X <- model.matrix(f, rectangle)
X[valid==0,1] <- 0
## Keep only years for which we have the max number of observations
large.panels <- by(dat.pcse, dat.pcse[,groupT], nrow) # How many valid observations per year?
if(max(large.panels) < N){warning('There is no time period during which all units are observed. Consider using pairwise estimation.')}
T.balanced <- names(large.panels[large.panels==max(large.panels)]) # Which years have max(valid observations)?
T.casewise <- length(T.balanced)
dat.balanced <- dat.pcse[dat.pcse[,groupT] %in% T.balanced,] # Extract biggest rectangular subset
dat.balanced <- dat.balanced[order(dat.balanced[,groupN], dat.balanced[,groupT]),]
e <- dat.balanced$e
## Calculate pcse as in Beck & Katz (1995)
E <- t(matrix(dat.balanced$e, N, T.casewise, byrow=TRUE))
Omega <- kronecker((crossprod(E) / T.casewise), Matrix(diag(1, T)))
}
## Finish evaluation, clean and output
salami <- t(X) %*% Omega %*% X
bread <- solve(crossprod(X))
sandwich <- bread %*% salami %*% bread
colnames(sandwich) <- names(coef(object))
row.names(sandwich) <- names(coef(object))
pcse <- sqrt(diag(sandwich))
b <- coef(object)
tstats <- b/pcse
df <- nobs - ncol(X)
pval <- 2*pt(abs(tstats), df, lower.tail=FALSE)
res <- list(vcov=sandwich, pcse=pcse, b=b, tstats=tstats, df=df, pval=pval, pairwise=pairwise,
nobs=nobs, nmiss=(N*T)-nobs, call=match.call())
class(res) <- "pcse"
return(res)
}