Вы также можете сделать это с «обычными» массивами с помощью необычного индексирования:
import numpy as np
data = np.zeros((10,10))
data[np.arange(5), np.arange(5)+2] = [5, 6, 7, 8, 9]
data[np.arange(3)+4, np.arange(3)] = [1, 2, 3]
print data
(Вы можете заменить эти вызовы на np.arange
на np.r_
, если хотите быть более краткими. Например,вместо data[np.arange(3)+4, np.arange(3)]
используйте data[np.r_[:3]+4, np.r_[:3]]
)
Это дает:
[[0 0 5 0 0 0 0 0 0 0]
[0 0 0 6 0 0 0 0 0 0]
[0 0 0 0 7 0 0 0 0 0]
[0 0 0 0 0 8 0 0 0 0]
[1 0 0 0 0 0 9 0 0 0]
[0 2 0 0 0 0 0 0 0 0]
[0 0 3 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 0 0 0 0 0]]
Однако, если вы все равно собираетесь использовать разреженные матрицы, взгляните на scipy.sparse.spdiags
.(Обратите внимание, что вам нужно добавить фальшивые данные в значения строк, если вы помещаете данные в диагональную позицию с положительным значением (например, 3 в позиции 4 в примере))
В качестве быстрого примера:
import numpy as np
import scipy as sp
import scipy.sparse
diag_rows = np.array([[1, 1, 1, 1, 1, 1, 1],
[2, 2, 2, 2, 2, 2, 2],
[0, 0, 0, 0, 3, 3, 3]])
positions = [-3, 0, 4]
print sp.sparse.spdiags(diag_rows, positions, 10, 10).todense()
Это дает:
[[2 0 0 0 3 0 0 0 0 0]
[0 2 0 0 0 3 0 0 0 0]
[0 0 2 0 0 0 3 0 0 0]
[1 0 0 2 0 0 0 0 0 0]
[0 1 0 0 2 0 0 0 0 0]
[0 0 1 0 0 2 0 0 0 0]
[0 0 0 1 0 0 2 0 0 0]
[0 0 0 0 1 0 0 0 0 0]
[0 0 0 0 0 1 0 0 0 0]
[0 0 0 0 0 0 1 0 0 0]]