Как реализовать двоичное дерево поиска в Python? - PullRequest
34 голосов
/ 26 марта 2011

Это то, что у меня есть, но оно не работает:

class Node:
    rChild,lChild,data = None,None,None

    def __init__(self,key):
        self.rChild = None
        self.lChild = None
        self.data = key

class Tree:
    root,size = None,0
    def __init__(self):
        self.root = None
        self.size = 0

    def insert(self,node,someNumber):
        if node is None:
            node = Node(someNumber)
        else:
            if node.data > someNumber:
                self.insert(node.rchild,someNumber)
            else:
                self.insert(node.rchild, someNumber)
        return

def main():
    t = Tree()
    t.root = Node(4)
    t.root.rchild = Node(5)
    print t.root.data #this works
    print t.root.rchild.data #this works too
    t = Tree()
    t.insert(t.root,4)
    t.insert(t.root,5)
    print t.root.data #this fails
    print t.root.rchild.data #this fails too

if __name__ == '__main__':
     main()

Ответы [ 15 ]

58 голосов
/ 26 марта 2011

Вот краткий пример двоичной вставки:

class Node:
    def __init__(self, val):
        self.l_child = None
        self.r_child = None
        self.data = val

def binary_insert(root, node):
    if root is None:
        root = node
    else:
        if root.data > node.data:
            if root.l_child is None:
                root.l_child = node
            else:
                binary_insert(root.l_child, node)
        else:
            if root.r_child is None:
                root.r_child = node
            else:
                binary_insert(root.r_child, node)

def in_order_print(root):
    if not root:
        return
    in_order_print(root.l_child)
    print root.data
    in_order_print(root.r_child)

def pre_order_print(root):
    if not root:
        return        
    print root.data
    pre_order_print(root.l_child)
    pre_order_print(root.r_child)    

r = Node(3)
binary_insert(r, Node(7))
binary_insert(r, Node(1))
binary_insert(r, Node(5))

     3
    / \
   1   7
      /
     5

print "in order:"
in_order_print(r)

print "pre order"
pre_order_print(r)

in order:
1
3
5
7
pre order
3
1
7
5
10 голосов
/ 26 марта 2011
class Node: 
    rChild,lChild,data = None,None,None

Это неправильно - это делает ваши переменные переменными класса - то есть каждый экземпляр Node использует одни и те же значения (изменение rChild любого узла изменяет его для всех узлов!). Это явно не то, что вы хотите; попробовать

class Node: 
    def __init__(self, key):
        self.rChild = None
        self.lChild = None
        self.data = key

теперь у каждого узла есть свой набор переменных. То же самое относится к вашему определению дерева,

class Tree:
    root,size = None,0    # <- lose this line!
    def __init__(self):
        self.root = None
        self.size = 0

Кроме того, каждый класс должен быть классом "нового стиля", производным от класса "объект" и должен возвращаться к объекту .__ init __ ():

class Node(object): 
    def __init__(self, data, rChild=None, lChild=None):
        super(Node,self).__init__()
        self.data   = data
        self.rChild = rChild
        self.lChild = lChild

class Tree(object):
    def __init__(self):
        super(Tree,self).__init__()
        self.root = None
        self.size = 0

Кроме того, main () имеет слишком большой отступ - как показано, это метод дерева, который нельзя вызвать, потому что он не принимает аргумент self .

Кроме того, вы изменяете данные объекта напрямую (t.root = Node(4)), что разрушает инкапсуляцию (прежде всего, наличие классов); вы должны делать что-то более похожее на

def main():
    t = Tree()
    t.add(4)    # <- let the tree create a data Node and insert it
    t.add(5)
7 голосов
/ 15 августа 2012
class BST:
    def __init__(self, val=None):
        self.left = None
        self.right = None
        self.val = val

    def __str__(self):
        return "[%s, %s, %s]" % (self.left, str(self.val), self.right)

    def isEmpty(self):
        return self.left == self.right == self.val == None

    def insert(self, val):
        if self.isEmpty():
            self.val = val
        elif val < self.val:
            if self.left is None:
                self.left = BST(val)
            else:
                self.left.insert(val)
        else:
            if self.right is None:
                self.right = BST(val)
            else:
                self.right.insert(val)

a = BST(1)
a.insert(2)
a.insert(3)
a.insert(0)
print a
5 голосов
/ 26 марта 2011
class Node:
    rChild,lChild,parent,data = None,None,None,0    

def __init__(self,key):
    self.rChild = None
    self.lChild = None
    self.parent = None
    self.data = key 

class Tree:
    root,size = None,0
    def __init__(self):
        self.root = None
        self.size = 0
    def insert(self,someNumber):
        self.size = self.size+1
        if self.root is None:
            self.root = Node(someNumber)
        else:
            self.insertWithNode(self.root, someNumber)    

    def insertWithNode(self,node,someNumber):
        if node.lChild is None and node.rChild is None:#external node
            if someNumber > node.data:
                newNode = Node(someNumber)
                node.rChild = newNode
                newNode.parent = node
            else:
                newNode = Node(someNumber)
                node.lChild = newNode
                newNode.parent = node
        else: #not external
            if someNumber > node.data:
                if node.rChild is not None:
                    self.insertWithNode(node.rChild, someNumber)
                else: #if empty node
                    newNode = Node(someNumber)
                    node.rChild = newNode
                    newNode.parent = node 
            else:
                if node.lChild is not None:
                    self.insertWithNode(node.lChild, someNumber)
                else:
                    newNode = Node(someNumber)
                    node.lChild = newNode
                    newNode.parent = node                    

    def printTree(self,someNode):
        if someNode is None:
            pass
        else:
            self.printTree(someNode.lChild)
            print someNode.data
            self.printTree(someNode.rChild)

def main():  
    t = Tree()
    t.insert(5)  
    t.insert(3)
    t.insert(7)
    t.insert(4)
    t.insert(2)
    t.insert(1)
    t.insert(6)
    t.printTree(t.root)

if __name__ == '__main__':
    main()

Мое решение.

5 голосов
/ 26 марта 2011

Метод Op'а Tree.insert соответствует награде "Gross Misnomer of the Week" - он ничего не вставляет.Он создает узел, который не присоединен ни к какому другому узлу (не то, что есть какие-либо узлы для его присоединения), а затем созданный узел уничтожается, когда метод возвращает.

Для назидания @Hugh Bothwell:

>>> class Foo(object):
...    bar = None
...
>>> a = Foo()
>>> b = Foo()
>>> a.bar
>>> a.bar = 42
>>> b.bar
>>> b.bar = 666
>>> a.bar
42
>>> b.bar
666
>>>
2 голосов
/ 24 сентября 2014

Я нахожу решения немного неуклюжими в части insert.Вы можете вернуть ссылку root и немного упростить ее:

def binary_insert(root, node):
    if root is None:
        return node
    if root.data > node.data:
        root.l_child = binary_insert(root.l_child, node)
    else:
        root.r_child = binary_insert(root.r_child, node)
    return root
1 голос
/ 06 июля 2017

Легко реализовать BST, используя два класса: 1. Узел и 2. Класс Tree Tree будет только для пользовательского интерфейса, а фактические методы будут реализованы в классе Node.

class Node():

    def __init__(self,val):
        self.value = val
        self.left = None
        self.right = None


    def _insert(self,data):
        if data == self.value:
            return False
        elif data < self.value:
            if self.left:
                return self.left._insert(data)
            else:
                self.left = Node(data)
                return True
        else:
            if self.right:
                return self.right._insert(data)
            else:
                self.right = Node(data)
                return True

    def _inorder(self):
        if self:
            if self.left:
                self.left._inorder()
            print(self.value)
            if self.right:
                self.right._inorder()



class Tree():

    def __init__(self):
        self.root = None

    def insert(self,data):
        if self.root:
            return self.root._insert(data)
        else:
            self.root = Node(data)
            return True
    def inorder(self):
        if self.root is not None:
            return self.root._inorder()
        else:
            return False




if __name__=="__main__":
    a = Tree()
    a.insert(16)
    a.insert(8)
    a.insert(24)
    a.insert(6)
    a.insert(12)
    a.insert(19)
    a.insert(29)
    a.inorder()

Функция Inorderдля проверки правильности реализации BST.

1 голос
/ 04 сентября 2013

Вот компактная, объектно-ориентированная, рекурсивная реализация:

    class BTreeNode(object):
        def __init__(self, data):
            self.data = data
            self.rChild = None
            self.lChild = None

    def __str__(self):
        return (self.lChild.__str__() + '<-' if self.lChild != None else '') + self.data.__str__() + ('->' + self.rChild.__str__() if self.rChild != None else '')

    def insert(self, btreeNode):
        if self.data > btreeNode.data: #insert left
            if self.lChild == None:
                self.lChild = btreeNode
            else:
                self.lChild.insert(btreeNode)
        else: #insert right
            if self.rChild == None:
                self.rChild = btreeNode
            else:
                self.rChild.insert(btreeNode)


def main():
    btreeRoot = BTreeNode(5)
    print 'inserted %s:' %5, btreeRoot

    btreeRoot.insert(BTreeNode(7))
    print 'inserted %s:' %7, btreeRoot

    btreeRoot.insert(BTreeNode(3))
    print 'inserted %s:' %3, btreeRoot

    btreeRoot.insert(BTreeNode(1))
    print 'inserted %s:' %1, btreeRoot

    btreeRoot.insert(BTreeNode(2))
    print 'inserted %s:' %2, btreeRoot

    btreeRoot.insert(BTreeNode(4))
    print 'inserted %s:' %4, btreeRoot

    btreeRoot.insert(BTreeNode(6))
    print 'inserted %s:' %6, btreeRoot

Вывод вышеуказанной функции main ():

inserted 5: 5
inserted 7: 5->7
inserted 3: 3<-5->7
inserted 1: 1<-3<-5->7
inserted 2: 1->2<-3<-5->7
inserted 4: 1->2<-3->4<-5->7
inserted 6: 1->2<-3->4<-5->6<-7
1 голос
/ 29 апреля 2013

Другой Python BST с ключом сортировки (по умолчанию значение)

LEFT = 0
RIGHT = 1
VALUE = 2
SORT_KEY = -1

class BinarySearchTree(object):

    def __init__(self, sort_key=None):
        self._root = []  
        self._sort_key = sort_key
        self._len = 0  

def insert(self, val):
    if self._sort_key is None:
        sort_key = val // if no sort key, sort key is value
    else:
        sort_key = self._sort_key(val)

    node = self._root
    while node:
        if sort_key < node[_SORT_KEY]:
            node = node[LEFT]
        else:
            node = node[RIGHT]

    if sort_key is val:
        node[:] = [[], [], val]
    else:
        node[:] = [[], [], val, sort_key]
    self._len += 1

def minimum(self):
    return self._extreme_node(LEFT)[VALUE]

def maximum(self):
    return self._extreme_node(RIGHT)[VALUE]

def find(self, sort_key):
    return self._find(sort_key)[VALUE]

def _extreme_node(self, side):
    if not self._root:
        raise IndexError('Empty')
    node = self._root
    while node[side]:
        node = node[side]
    return node

def _find(self, sort_key):
    node = self._root
    while node:
        node_key = node[SORT_KEY]
        if sort_key < node_key:
            node = node[LEFT]
        elif sort_key > node_key:
            node = node[RIGHT]
        else:
            return node
    raise KeyError("%r not found" % sort_key)
1 голос
/ 26 марта 2011

Просто кое-что, чтобы помочь вам начать.

(простая идея) поиска в двоичном дереве вполне может быть реализована в python в соответствии со строками:

def search(node, key):
    if node is None: return None  # key not found
    if key< node.key: return search(node.left, key)
    elif key> node.key: return search(node.right, key)
    else: return node.value  # found key

Теперь вам просто нужно реализовать леса (создание дерева и вставка значений)) и все готово.

...