Я пытаюсь просканировать Википедию, чтобы получить некоторые данные для анализа текста. Я использую Python urllib2 и Beautifulsoup. Мой вопрос заключается в следующем: есть ли простой способ избавиться от ненужных тегов (например, ссылок «a» или «span») из текста, который я прочитал.
для этого сценария:
import urllib2
from BeautifulSoup import *
opener = urllib2.build_opener()
opener.addheaders = [('User-agent', 'Mozilla/5.0')]
infile = opener.open("http://en.wikipedia.org/w/index.php?title=data_mining&printable=yes")pool = BeautifulSoup(infile.read())
res=pool.findAll('div',attrs={'class' : 'mw-content-ltr'}) # to get to content directly
paragrapgs=res[0].findAll("p") #get all paragraphs
Я получаю абзацы с множеством ссылочных тегов, таких как:
paragrapgs [0] =
<p><b>Data mining</b> (the analysis step of the <b>knowledge discovery in databases</b> process,<sup id="cite_ref-Fayyad_0-0" class="reference"><a href="#cite_note-Fayyad-0"><span>[</span>1<span>]</span></a></sup> or KDD), a relatively young and interdisciplinary field of <a href="/wiki/Computer_science" title="Computer science">computer science</a><sup id="cite_ref-acm_1-0" class="reference"><a href="#cite_note-acm-1"><span>[</span>2<span>]</span></a></sup><sup id="cite_ref-brittanica_2-0" class="reference"><a href="#cite_note-brittanica-2"><span>[</span>3<span>]</span></a></sup> is the process of discovering new patterns from large <a href="/wiki/Data_set" title="Data set">data sets</a> involving methods at the intersection of <a href="/wiki/Artificial_intelligence" title="Artificial intelligence">artificial intelligence</a>, <a href="/wiki/Machine_learning" title="Machine learning">machine learning</a>, <a href="/wiki/Statistics" title="Statistics">statistics</a> and <a href="/wiki/Database_system" title="Database system">database systems</a>.<sup id="cite_ref-acm_1-1" class="reference"><a href="#cite_note-acm-1"><span>[</span>2<span>]</span></a></sup> The goal of data mining is to extract knowledge from a data set in a human-understandable structure<sup id="cite_ref-acm_1-2" class="reference"><a href="#cite_note-acm-1"><span>[</span>2<span>]</span></a></sup> and involves database and <a href="/wiki/Data_management" title="Data management">data management</a>, <a href="/wiki/Data_Pre-processing" title="Data Pre-processing">data preprocessing</a>, <a href="/wiki/Statistical_model" title="Statistical model">model</a> and <a href="/wiki/Statistical_inference" title="Statistical inference">inference</a> considerations, interestingness metrics, <a href="/wiki/Computational_complexity_theory" title="Computational complexity theory">complexity</a> considerations, post-processing of found structure, <a href="/wiki/Data_visualization" title="Data visualization">visualization</a> and <a href="/wiki/Online_algorithm" title="Online algorithm">online updating</a>.<sup id="cite_ref-acm_1-3" class="reference"><a href="#cite_note-acm-1"><span>[</span>2<span>]</span></a></sup></p>
Есть идеи как их убрать и иметь чистый текст?