Возможно, это старый вопрос, но я думаю, что есть решение для всех, кто прочтет этот пост:
/** Rectangle To Point. */
boolean testRectangleToPoint(double rectWidth, double rectHeight, double rectRotation, double rectCenterX, double rectCenterY, double pointX, double pointY) {
if(rectRotation == 0) // Higher Efficiency for Rectangles with 0 rotation.
return Math.abs(rectCenterX-pointX) < rectWidth/2 && Math.abs(rectCenterY-pointY) < rectHeight/2;
double tx = Math.cos(rectRotation)*pointX - Math.sin(rectRotation)*pointY;
double ty = Math.cos(rectRotation)*pointY + Math.sin(rectRotation)*pointX;
double cx = Math.cos(rectRotation)*rectCenterX - Math.sin(rectRotation)*rectCenterY;
double cy = Math.cos(rectRotation)*rectCenterY + Math.sin(rectRotation)*rectCenterX;
return Math.abs(cx-tx) < rectWidth/2 && Math.abs(cy-ty) < rectHeight/2;
}
/** Circle To Segment. */
boolean testCircleToSegment(double circleCenterX, double circleCenterY, double circleRadius, double lineAX, double lineAY, double lineBX, double lineBY) {
double lineSize = Math.sqrt(Math.pow(lineAX-lineBX, 2) + Math.pow(lineAY-lineBY, 2));
double distance;
if (lineSize == 0) {
distance = Math.sqrt(Math.pow(circleCenterX-lineAX, 2) + Math.pow(circleCenterY-lineAY, 2));
return distance < circleRadius;
}
double u = ((circleCenterX - lineAX) * (lineBX - lineAX) + (circleCenterY - lineAY) * (lineBY - lineAY)) / (lineSize * lineSize);
if (u < 0) {
distance = Math.sqrt(Math.pow(circleCenterX-lineAX, 2) + Math.pow(circleCenterY-lineAY, 2));
} else if (u > 1) {
distance = Math.sqrt(Math.pow(circleCenterX-lineBX, 2) + Math.pow(circleCenterY-lineBY, 2));
} else {
double ix = lineAX + u * (lineBX - lineAX);
double iy = lineAY + u * (lineBY - lineAY);
distance = Math.sqrt(Math.pow(circleCenterX-ix, 2) + Math.pow(circleCenterY-iy, 2));
}
return distance < circleRadius;
}
/** Rectangle To Circle. */
boolean testRectangleToCircle(double rectWidth, double rectHeight, double rectRotation, double rectCenterX, double rectCenterY, double circleCenterX, double circleCenterY, double circleRadius) {
double tx, ty, cx, cy;
if(rectRotation == 0) { // Higher Efficiency for Rectangles with 0 rotation.
tx = circleCenterX;
ty = circleCenterY;
cx = rectCenterX;
cy = rectCenterY;
} else {
tx = Math.cos(rectRotation)*circleCenterX - Math.sin(rectRotation)*circleCenterY;
ty = Math.cos(rectRotation)*circleCenterY + Math.sin(rectRotation)*circleCenterX;
cx = Math.cos(rectRotation)*rectCenterX - Math.sin(rectRotation)*rectCenterY;
cy = Math.cos(rectRotation)*rectCenterY + Math.sin(rectRotation)*rectCenterX;
}
return testRectangleToPoint(rectWidth, rectHeight, rectRotation, rectCenterX, rectCenterY, circleCenterX, circleCenterY) ||
testCircleToSegment(tx, ty, circleRadius, cx-rectWidth/2, cy+rectHeight/2, cx+rectWidth/2, cy+rectHeight/2) ||
testCircleToSegment(tx, ty, circleRadius, cx+rectWidth/2, cy+rectHeight/2, cx+rectWidth/2, cy-rectHeight/2) ||
testCircleToSegment(tx, ty, circleRadius, cx+rectWidth/2, cy-rectHeight/2, cx-rectWidth/2, cy-rectHeight/2) ||
testCircleToSegment(tx, ty, circleRadius, cx-rectWidth/2, cy-rectHeight/2, cx-rectWidth/2, cy+rectHeight/2);
}
Это код для проверки столкновений между кругом (The Ball) и прямоугольником (который может вращаться).