CDF 9/7 Дискретное вейвлет-преобразование (свертка) - PullRequest
2 голосов
/ 19 февраля 2011

Я пытаюсь написать простую автономную программу, которая выполняет один уровень дискретного вейвлет-преобразования в одномерном списке, используя вейвлеты CDF 9/7, а затем реконструирует его.Я просто использую метод свертки / банка фильтров, чтобы понять, как он работает.Другими словами, сверните список с фильтром, чтобы получить коэффициенты масштабирования, сверните список с другим фильтром, чтобы получить коэффициенты вейвлета, но делайте это только начиная с каждого другого элемента.Затем увеличьте выборку (т.е. добавьте нули между элементами), примените фильтры к вейвлету и масштабным коэффициентам, сложите их вместе и получите оригинальный список.

Я могу заставить это работать для вейвлет-фильтра Хаара, нокогда я пытаюсь использовать фильтр CDF 9/7, он не выдает такой же ввод.Результирующий список и исходный список, однако, суммируют одно и то же.

Я уверен, что это очень глупая ошибка в свертке, но я просто не могу понять это.Я пробовал несколько перестановок свертки, например, центрировал фильтр по индексу «i» вместо того, чтобы начинать его с левого края, но, похоже, ничего не сработало ... Вероятно, это одна из тех ошибок, которые будутя бью себя по голове, когда я это понимаю.

Вот код:

import random
import math
length = 128
array = list()
row = list()
scaleCoefficients = list()
waveletCoefficients = list()
reconstruction = list()

def upsample(lst, index):
    if (index % 2 == 0):
        return 0.0
    else:
        return lst[index/2]

for i in range(length):
    array.append(random.random())

## CDF 9/7 Wavelet (doesn't work?)
DWTAnalysisLowpass = [.026749, -.016864, -.078223, .266864, .602949, .266864, -.078223, -.016864, .026749]
for i in range(len(DWTAnalysisLowpass)):
    DWTAnalysisLowpass[i] = math.sqrt(2.0) * DWTAnalysisLowpass[i]
DWTAnalysisHighpass = [0.0, .091272, -.057544, -0.591272, 1.115087, -.591272, -.057544, .091272, 0.0]
for i in range(len(DWTAnalysisHighpass)):
    DWTAnalysisHighpass[i] = 1.0/math.sqrt(2.0) * DWTAnalysisHighpass[i]

DWTSynthesisLowpass = [0.0, -.091272, -.057544, 0.591272, 1.115087, .591272, -.057544, -.091272, 0.0]
for i in range(len(DWTSynthesisLowpass)):
    DWTSynthesisLowpass[i] = 1.0/math.sqrt(2.0) * DWTSynthesisLowpass[i]
DWTSynthesisHighpass = [.026749, .016864, -.078223, -.266864, .602949, -.266864, -.078223, .016864, .026749]
for i in range(len(DWTSynthesisHighpass)):
    DWTSynthesisHighpass[i] = math.sqrt(2.0) * DWTSynthesisHighpass[i]

## Haar Wavelet (Works)
## c = 1.0/math.sqrt(2)
## DWTAnalysisLowpass = [c,c]
## DWTAnalysisHighpass = [c, -c]
## DWTSynthesisLowpass = [c, c]
## DWTSynthesisHighpass = [-c, c]


## Do the forward transform - we only need to do it on half the elements
for i in range(0,length,2):
    newVal = 0.0
    ## Convolve the next j elements
    for j in range(len(DWTAnalysisLowpass)):
        index = i + j
        if(index >= length):
            index = index - length

        newVal = newVal + array[index]*DWTAnalysisLowpass[j]

    scaleCoefficients.append(newVal)

    newVal = 0.0
    for j in range(len(DWTAnalysisHighpass)):
        index = i + j
        if(index >= length):
            index = index - length

        newVal = newVal + array[index]*DWTAnalysisHighpass[j]

    waveletCoefficients.append(newVal)

## Do the inverse transform
for i in range(length):
    newVal = 0.0
    for j in range(len(DWTSynthesisHighpass)):
        index = i + j
        if(index >= length):
            index = index - length

        newVal = newVal + upsample(waveletCoefficients, index)*DWTSynthesisHighpass[j]

    for j in range(len(DWTSynthesisLowpass)):
        index = i + j
        if(index >= length):
            index = index - length

        newVal = newVal + upsample(scaleCoefficients, index)*DWTSynthesisLowpass[j]

    reconstruction.append(newVal)

print sum(reconstruction)
print sum(array)
print reconstruction
print array

Между прочим, я взял значения фильтра из приложения здесь: http://www1.cs.columbia.edu/~rso2102/AWR/Files/Overbeck2009AWR.pdf,, но я видел, как они использовались в куче примеров Matlabкод также.

1 Ответ

1 голос
/ 20 февраля 2011

На самом деле я решил это сам, сравнив коэффициенты и затем реконструкцию с кодом из этой реализации лифтинга:

http://www.embl.de/~gpau/misc/dwt97.c

В основном, я 1) Сделал граничные условиясимметричный, а не периодический 2) Пришлось определенным образом компенсировать свертки (и повышающую дискретизацию), чтобы все выровнялось.

Вот код на случай, если кто-нибудь еще столкнется с проблемой.Я чувствую, что это все еще слишком усложняет, особенно потому, что это нигде не документировано, но, по крайней мере, работает.Сюда также входит «переключатель», который я использовал для проверки этой ссылки, и мне пришлось изменить вейвлет Хаара, чтобы он работал.

import random
import math
length = int()
array = list()
row = list()
scaleCoefficients = list()
waveletCoefficients = list()
reconstruction = list()
switch = False

def upsample1(lst, index):
    if (index % 2 == 0):
        return lst[index/2]
    else:
        return 0.0

def upsample2(lst, index):
    if (index % 2 == 0):
        return 0.0
    else:
        return lst[index/2]

## Generate a random list of floating point numbers
if (not switch):
    length = 128
    for i in range(length):
        array.append(random.random())
else:
    length = 32
    for i in range(32):
        array.append(5.0+i+.4*i*i-.02*i*i*i)

## First Part Just Calculates the Filters
## CDF 9/7 Wavelet
DWTAnalysisLowpass = [.026749, -.016864, -.078223, .266864, .602949, .266864, -.078223, -.016864, .026749]
for i in range(len(DWTAnalysisLowpass)):
    DWTAnalysisLowpass[i] = math.sqrt(2.0) * DWTAnalysisLowpass[i]
DWTAnalysisHighpass = [.091272, -.057544, -0.591272, 1.115087, -.591272, -.057544, .091272]
for i in range(len(DWTAnalysisHighpass)):
    DWTAnalysisHighpass[i] = DWTAnalysisHighpass[i]/math.sqrt(2.0)

DWTSynthesisLowpass = [-.091272, -.057544, 0.591272, 1.115087, .591272, -.057544, -.091272]
for i in range(len(DWTSynthesisLowpass)):
    DWTSynthesisLowpass[i] = DWTSynthesisLowpass[i]/math.sqrt(2.0)
DWTSynthesisHighpass = [.026749, .016864, -.078223, -.266864, .602949, -.266864, -.078223, .016864, .026749]
for i in range(len(DWTSynthesisHighpass)):
    DWTSynthesisHighpass[i] = math.sqrt(2.0) * DWTSynthesisHighpass[i]

## Haar Wavelet
## c = 1.0/math.sqrt(2)
## DWTAnalysisLowpass = [c,c]
## DWTAnalysisHighpass = [c, -c]
## DWTSynthesisLowpass = [-c, c]
## DWTSynthesisHighpass = [c, c]

# Do the forward transform. We can skip every other sample since they would
# be removed in the downsampling anyway
for i in range(0,length,2):
    newVal = 0.0
    ## Convolve the next j elements by the low-pass analysis filter
    for j in range(len(DWTAnalysisLowpass)):
        index = i + j - len(DWTAnalysisLowpass)/2
        if(index >= length):
            index = 2*length - index - 2
        elif (index < 0):
            index = -index

        newVal = newVal + array[index]*DWTAnalysisLowpass[j]

    # append the new value to the list of scale coefficients
    scaleCoefficients.append(newVal)

    newVal = 0.0
    # Convolve the next j elements by the high-pass analysis filter
    for j in range(len(DWTAnalysisHighpass)):
        index = i + j - len(DWTAnalysisHighpass)/2 + 1
        if(index >= length):
            index = 2*length - index - 2
        elif (index < 0):
            index = -index

        newVal = newVal + array[index]*DWTAnalysisHighpass[j]

    # append the new value to the list of wavelet coefficients
    waveletCoefficients.append(newVal)

# Do the inverse transform
for i in range(length):
    newVal = 0.0
    # convolve the upsampled wavelet coefficients with the high-pass synthesis filter
    for j in range(len(DWTSynthesisHighpass)):
        index = i + j - len(DWTSynthesisHighpass)/2
        if(index >= length):
            index = 2*length - index - 2
        elif (index < 0):
            index = -index

        newVal = newVal + upsample2(waveletCoefficients, index)*DWTSynthesisHighpass[j]

    # convolve the upsampled scale coefficients with the low-pass synthesis filter, and
    # add it to the previous convolution
    for j in range(len(DWTSynthesisLowpass)):
        index = i + j - len(DWTSynthesisLowpass)/2
        if(index >= length):
            index = 2*length - index - 2
        elif (index < 0):
            index = -index

        newVal = newVal + upsample1(scaleCoefficients, index)*DWTSynthesisLowpass[j]

    reconstruction.append(newVal)

print ("Sums: ")
print sum(reconstruction)
print sum(array)
print ("Original Signal: ")
print array
if (not switch):
    print ("Wavelet Coefficients: ")
    for i in range(len(scaleCoefficients)):
        print ("sc[" + str(i) + "]: " + str(scaleCoefficients[i]))
    for i in range(len(waveletCoefficients)):
        print ("wc[" + str(i) + "]: " + str(waveletCoefficients[i]))
print ("Reconstruction: ")
print reconstruction
...