Конечно, первое, что нужно сделать, - это найти первичную факторизацию числа, как сказал Световой кодер. Say
n = p^a * q^b * r^c * ...
Тогда
- найти мультипликативные разбиения
m = n / p^a
- для
0 <= k <= a
, найдите мультипликативные разбиения p^k
, что эквивалентно нахождению аддитивных разбиений k
- для каждого мультипликативного разбиения
m
, найдите все различные способы распределения a-k
факторов p
среди факторов
- объединить результаты 2 и 3.
Удобно рассматривать мультипликативные разбиения как списки (или наборы) пар (делитель, кратность), чтобы избежать создания дубликатов.
Я написал код на Haskell, потому что это самый удобный и лаконичный язык, который я знаю для такого рода вещей:
module MultiPart (multiplicativePartitions) where
import Data.List (sort)
import Math.NumberTheory.Primes (factorise)
import Control.Arrow (first)
multiplicativePartitions :: Integer -> [[Integer]]
multiplicativePartitions n
| n < 1 = []
| n == 1 = [[]]
| otherwise = map ((>>= uncurry (flip replicate)) . sort) . pfPartitions $ factorise n
additivePartitions :: Int -> [[(Int,Int)]]
additivePartitions 0 = [[]]
additivePartitions n
| n < 0 = []
| otherwise = aParts n n
where
aParts :: Int -> Int -> [[(Int,Int)]]
aParts 0 _ = [[]]
aParts 1 m = [[(1,m)]]
aParts k m = withK ++ aParts (k-1) m
where
withK = do
let q = m `quot` k
j <- [q,q-1 .. 1]
[(k,j):prt | let r = m - j*k, prt <- aParts (min (k-1) r) r]
countedPartitions :: Int -> Int -> [[(Int,Int)]]
countedPartitions 0 count = [[(0,count)]]
countedPartitions quant count = cbParts quant quant count
where
prep _ 0 = id
prep m j = ((m,j):)
cbParts :: Int -> Int -> Int -> [[(Int,Int)]]
cbParts q 0 c
| q == 0 = if c == 0 then [[]] else [[(0,c)]]
| otherwise = error "Oops"
cbParts q 1 c
| c < q = [] -- should never happen
| c == q = [[(1,c)]]
| otherwise = [[(1,q),(0,c-q)]]
cbParts q m c = do
let lo = max 0 $ q - c*(m-1)
hi = q `quot` m
j <- [lo .. hi]
let r = q - j*m
m' = min (m-1) r
map (prep m j) $ cbParts r m' (c-j)
primePowerPartitions :: Integer -> Int -> [[(Integer,Int)]]
primePowerPartitions p e = map (map (first (p^))) $ additivePartitions e
distOne :: Integer -> Int -> Integer -> Int -> [[(Integer,Int)]]
distOne _ 0 d k = [[(d,k)]]
distOne p e d k = do
cap <- countedPartitions e k
return $ [(p^i*d,m) | (i,m) <- cap]
distribute :: Integer -> Int -> [(Integer,Int)] -> [[(Integer,Int)]]
distribute _ 0 xs = [xs]
distribute p e [(d,k)] = distOne p e d k
distribute p e ((d,k):dks) = do
j <- [0 .. e]
dps <- distOne p j d k
ys <- distribute p (e-j) dks
return $ dps ++ ys
distribute _ _ [] = []
pfPartitions :: [(Integer,Int)] -> [[(Integer,Int)]]
pfPartitions [] = [[]]
pfPartitions [(p,e)] = primePowerPartitions p e
pfPartitions ((p,e):pps) = do
cop <- pfPartitions pps
k <- [0 .. e]
ppp <- primePowerPartitions p k
mix <- distribute p (e-k) cop
return (ppp ++ mix)
Это не особо оптимизировано, но оно выполняет свою работу.
Несколько раз и результаты:
Prelude MultiPart> length $ multiplicativePartitions $ 10^10
59521
(0.03 secs, 53535264 bytes)
Prelude MultiPart> length $ multiplicativePartitions $ 10^11
151958
(0.11 secs, 125850200 bytes)
Prelude MultiPart> length $ multiplicativePartitions $ 10^12
379693
(0.26 secs, 296844616 bytes)
Prelude MultiPart> length $ multiplicativePartitions $ product [2 .. 10]
70520
(0.07 secs, 72786128 bytes)
Prelude MultiPart> length $ multiplicativePartitions $ product [2 .. 11]
425240
(0.36 secs, 460094808 bytes)
Prelude MultiPart> length $ multiplicativePartitions $ product [2 .. 12]
2787810
(2.06 secs, 2572962320 bytes)
10^k
, конечно, особенно легко, потому что задействованы только два простых числа (но числа без квадратов все же проще), факториалы замедляются раньше. Я думаю, что при тщательной организации порядка и выбора более качественных структур данных, чем списков, можно получить немало (вероятно, следует отсортировать основные факторы по показателю степени, но я не знаю, следует ли начинать с самых высоких показателей или самый низкий).