Поэтому после многих проблем с конвейером ( проверьте здесь ) я решил отдать предпочтение неблокирующим параллельным очередям по каналам NIO.Итак, я сделал несколько тестов на Java ConcurrentLinkedQueue.См. Ниже:
public static void main(String[] args) throws Exception {
ConcurrentLinkedQueue<String> queue = new ConcurrentLinkedQueue<String>();
// first test nothing:
for (int j = 0; j < 20; j++) {
Benchmarker bench = new Benchmarker();
String s = "asd";
for (int i = 0; i < 1000000; i++) {
bench.mark();
// s = queue.poll();
bench.measure();
}
System.out.println(bench.results());
Thread.sleep(100);
}
System.out.println();
// first test empty queue:
for (int j = 0; j < 20; j++) {
Benchmarker bench = new Benchmarker();
String s = "asd";
for (int i = 0; i < 1000000; i++) {
bench.mark();
s = queue.poll();
bench.measure();
}
System.out.println(bench.results());
Thread.sleep(100);
}
System.out.println();
// now test polling one element on a queue with size one
for (int j = 0; j < 20; j++) {
Benchmarker bench = new Benchmarker();
String s = "asd";
String x = "pela";
for (int i = 0; i < 1000000; i++) {
queue.offer(x);
bench.mark();
s = queue.poll();
bench.measure();
if (s != x) throw new Exception("bad!");
}
System.out.println(bench.results());
Thread.sleep(100);
}
System.out.println();
// now test polling one element on a queue with size two
for (int j = 0; j < 20; j++) {
Benchmarker bench = new Benchmarker();
String s = "asd";
String x = "pela";
for (int i = 0; i < 1000000; i++) {
queue.offer(x);
queue.offer(x);
bench.mark();
s = queue.poll();
bench.measure();
if (s != x) throw new Exception("bad!");
queue.poll();
}
System.out.println(bench.results());
Thread.sleep(100);
}
}
Результаты:
totalLogs=1000000, minTime=0, maxTime=85000, avgTime=58.61 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=5281000, avgTime=63.35 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=725000, avgTime=59.71 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=25000, avgTime=58.13 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=378000, avgTime=58.45 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=15000, avgTime=57.71 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=170000, avgTime=58.11 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=1495000, avgTime=59.87 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=232000, avgTime=63.0 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=184000, avgTime=57.89 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=2600000, avgTime=65.22 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=850000, avgTime=60.5 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=150000, avgTime=63.83 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=43000, avgTime=59.75 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=276000, avgTime=60.02 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=457000, avgTime=61.69 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=204000, avgTime=60.44 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=154000, avgTime=63.67 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=355000, avgTime=60.75 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=338000, avgTime=60.44 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=345000, avgTime=110.93 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=396000, avgTime=100.32 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=298000, avgTime=98.93 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=1891000, avgTime=101.9 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=254000, avgTime=103.06 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=1894000, avgTime=100.97 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=230000, avgTime=99.21 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=348000, avgTime=99.63 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=922000, avgTime=99.53 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=168000, avgTime=99.12 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=686000, avgTime=107.41 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=320000, avgTime=95.58 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=248000, avgTime=94.94 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=217000, avgTime=95.01 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=159000, avgTime=93.62 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=155000, avgTime=95.28 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=106000, avgTime=98.57 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=370000, avgTime=95.01 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=1836000, avgTime=96.21 (times in nanos)
totalLogs=1000000, minTime=0, maxTime=212000, avgTime=98.62 (times in nanos)
Вывод:
MaxTime может быть пугающим, но я думаю, что можно с уверенностью сказать, что мы находимся в 50Nanos диапазон для опроса параллельной очереди.