Еще одно простое, элегантное и быстрое решение:
In [11]: np.array([x1 + x2 for x1,x2 in zip(a1,a2)])
Out[11]: array(['aE', 'bF'], dtype='<U2')
Это очень быстро для небольших массивов.
In [12]: %timeit np.array([x1 + x2 for x1,x2 in zip(a1,a2)])
3.67 µs ± 136 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
In [13]: %timeit np.core.defchararray.add(a1, a2)
6.27 µs ± 28.3 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
In [14]: %timeit np.char.array(a1) + np.char.array(a2)
22.1 µs ± 319 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Для больших массивов разница во времени невелика.
In [15]: b1 = np.full(10000,'a')
In [16]: b2 = np.full(10000,'b')
In [189]: %timeit np.array([x1 + x2 for x1,x2 in zip(b1,b2)])
6.74 ms ± 66.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [188]: %timeit np.core.defchararray.add(b1, b2)
7.03 ms ± 419 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [187]: %timeit np.char.array(b1) + np.char.array(b2)
6.97 ms ± 284 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)