Мотивация
Многие наборы данных достаточно велики, поэтому нам нужно заботиться о скорости / эффективности.Поэтому я предлагаю это решение в этом духе.Это также кратко.
Для сравнения давайте отбросим столбец index
df = data_set.drop('index', 1)
Решение
Я предложуиспользование zip
и понимание
list(zip(*[df[c].values.tolist() for c in df]))
[('2012-02-17', 24.75, 25.03),
('2012-02-16', 25.0, 25.07),
('2012-02-15', 24.99, 25.15),
('2012-02-14', 24.68, 25.05),
('2012-02-13', 24.62, 24.77),
('2012-02-10', 24.38, 24.61)]
Это также может быть гибким, если мы хотим иметь дело с определенным подмножеством столбцов.Мы предполагаем, что столбцы, которые мы уже отобразили, являются подмножеством, которое мы хотим.
list(zip(*[df[c].values.tolist() for c in ['data_date', 'data_1', 'data_2']))
[('2012-02-17', 24.75, 25.03),
('2012-02-16', 25.0, 25.07),
('2012-02-15', 24.99, 25.15),
('2012-02-14', 24.68, 25.05),
('2012-02-13', 24.62, 24.77),
('2012-02-10', 24.38, 24.61)]
Все последующие дают одинаковые результаты
[tuple(x) for x in df.values]
df.to_records(index=False).tolist()
list(map(tuple,df.values))
list(map(tuple, df.itertuples(index=False)))
Что быстрее?
zip
и понимание быстрее с большим отрывом
%timeit [tuple(x) for x in df.values]
%timeit list(map(tuple, df.itertuples(index=False)))
%timeit df.to_records(index=False).tolist()
%timeit list(map(tuple,df.values))
%timeit list(zip(*[df[c].values.tolist() for c in df]))
небольшие данные
10000 loops, best of 3: 55.7 µs per loop
1000 loops, best of 3: 596 µs per loop
10000 loops, best of 3: 38.2 µs per loop
10000 loops, best of 3: 54.3 µs per loop
100000 loops, best of 3: 12.9 µs per loop
большие данные
10 loops, best of 3: 58.8 ms per loop
10 loops, best of 3: 43.9 ms per loop
10 loops, best of 3: 29.3 ms per loop
10 loops, best of 3: 53.7 ms per loop
100 loops, best of 3: 6.09 ms per loop