c=0;
wih = .1*ones(nh,ni+1);
who = .1*ones(no,nh+1);
while(c<3000)
c=c+1;
for i = 1:length(x(1,:))
for j = 1:nh
netj(j) = wih(j,1:end-1)*double(x(:,i))+wih(j,end)*1;
outj(j) = 1./(1+exp(-1*netj(j)));
end
% hidden to output layer
for k = 1:no
netk(k) = who(k,1:end-1)*outj+who(k,end)*1;
outk(k) = 1./(1+exp(-1*netk(k)));
delk(k) = outk(k)*(1-outk(k))*(t(k,i)-outk(k));
end
% backpropagation
for j = 1:nh
s=0;
for k = 1:no
s = s+who(k,j)*delk(k);
end
delj(j) = outj(j)*(1-outj(j))*s;
s=0;
end
for k = 1:no
for l = 1:nh
who(k,l)=who(k,l)+.5*delk(k)*outj(l);
end
who(k,l+1)=who(k,l+1)+1*delk(k)*1;
end
for j = 1:nh
for ii = 1:ni
wih(j,ii)=wih(j,ii)+.5*delj(j)*double(x(ii,i));
end
wih(j,ii+1)=wih(j,ii+1)+1*delj(j)*1;
end
end
end
Это реализует нейронную сеть обратного распространения.x
- это вход, t
- желаемый выход, ni
, nh
, no
количество входных, скрытых и выходных нейронных слоев.Я проверяю это для различных функций, таких как AND, OR, он отлично работает для них.Но XOR не работает.
Обучение x = [0 0 1 1; 0 1 0 1]
Обучение t = [0 1 1 0]
who
= матрица весов из скрытого в выходной слой
wih
= матрица весов извход в скрытый слой
Можете ли вы помочь?