Я очень новичок в Arduino. У меня гораздо больше опыта работы с Java и ActionScript 3. Я работаю над созданием экспонометра из Arduino Uno и TAOS TSL235R преобразователя света в частоту.
Я могу найти учебник только с использованием другого датчика, так что я работаю над тем, чтобы преобразовать то, что мне нужно, чтобы все это заработало (AKA немного копирует и вставляет, стыдно, но я новичок в этом).
Три части: это первое руководство из серии Arduino и датчик света Taos TSL230R: начало работы .
Фотографическое преобразование: Arduino и TSL230R: Фотографическое преобразование .
Сначала я мог возвращать значения для частоты, созданной датчиком TSL235R, но как только я попытался добавить код для фотографических преобразований, я получил только возвращенный ноль, и ни одна из функций вне основного цикла, похоже, не срабатывает что мой Serial.Println()
ничего не возвращает.
Меня больше волнует создание функций, чем если бы моя математика была идеальной. В ActionScript и Java есть прослушиватели событий для функций и тому подобное, нужно ли мне объявить функцию для ее запуска в C / C ++?
В общем, как я могу сделать так, чтобы все мои функции запускались на языке программирования C?
Мой Arduino Эскиз :
// TSL230R Pin Definitions
#define TSL_FREQ_PIN 2
// Our pulse counter for our interrupt
unsigned long pulse_cnt = 0;
// How often to calculate frequency
// 1000 ms = 1 second
#define READ_TM 1000
// Two variables used to track time
unsigned long cur_tm = millis();
unsigned long pre_tm = cur_tm;
// We'll need to access the amount of time passed
unsigned int tm_diff = 0;
unsigned long frequency;
unsigned long freq;
float lux;
float Bv;
float Sv;
// Set our frequency multiplier to a default of 1
// which maps to output frequency scaling of 100x.
int freq_mult = 100;
// We need to measure what to divide the frequency by:
// 1x sensitivity = 10,
// 10x sensitivity = 100,
// 100x sensitivity = 1000
int calc_sensitivity = 10;
void setup() {
attachInterrupt(0, add_pulse, RISING); // Attach interrupt to pin2.
pinMode(TSL_FREQ_PIN, INPUT); //Send output pin to Arduino
Serial.begin(9600); //Start the serial connection with the copmuter.
}//setup
void loop(){
// Check the value of the light sensor every READ_TM ms and
// calculate how much time has passed.
pre_tm = cur_tm;
cur_tm = millis();
if( cur_tm > pre_tm ) {
tm_diff += cur_tm - pre_tm;
}
else
if( cur_tm < pre_tm ) {
// Handle overflow and rollover (Arduino 011)
tm_diff += ( cur_tm + ( 34359737 - pre_tm ));
}
// If enough time has passed to do a new reading...
if (tm_diff >= READ_TM ) {
// Reset the ms counter
tm_diff = 0;
// Get our current frequency reading
frequency = get_tsl_freq();
// Calculate radiant energy
float uw_cm2 = calc_uwatt_cm2( frequency );
// Calculate illuminance
float lux = calc_lux_single( uw_cm2, 0.175 );
}
Serial.println(freq);
delay(1000);
} //Loop
unsigned long get_tsl_freq() {
// We have to scale out the frequency --
// Scaling on the TSL230R requires us to multiply by a factor
// to get actual frequency.
unsigned long freq = pulse_cnt * 100;
// Reset pulse counter
pulse_cnt = 0;
return(freq);
Serial.println("freq");
} //get_tsl_freq
void add_pulse() {
// Increase pulse count
pulse_cnt++;
return;
Serial.println("Pulse");
}//pulse
float calc_lux_single(float uw_cm2, float efficiency) {
// Calculate lux (lm/m^2), using standard formula
// Xv = Xl * V(l) * Km
// where Xl is W/m^2 (calculate actual received uW/cm^2, extrapolate from sensor size
// to whole cm size, then convert uW to W),
// V(l) = efficiency function (provided via argument) and
// Km = constant, lm/W @ 555 nm = 683 (555 nm has efficiency function of nearly 1.0).
//
// Only a single wavelength is calculated - you'd better make sure that your
// source is of a single wavelength... Otherwise, you should be using
// calc_lux_gauss() for multiple wavelengths.
// Convert to w_m2
float w_m2 = (uw_cm2 / (float) 1000000) * (float) 100;
// Calculate lux
float lux = w_m2 * efficiency * (float) 683;
return(lux);
Serial.println("Get lux");
} //lux_single
float calc_uwatt_cm2(unsigned long freq) {
// Get uW observed - assume 640 nm wavelength.
// Note the divide-by factor of ten -
// maps to a sensitivity of 1x.
float uw_cm2 = (float) freq / (float) 10;
// Extrapolate into the entire cm2 area
uw_cm2 *= ( (float) 1 / (float) 0.0136 );
return(uw_cm2);
Serial.println("Get uw_cm2");
} //calc_uwatt
float calc_ev( float lux, int iso ) {
// Calculate EV using the APEX method:
//
// Ev = Av + Tv = Bv + Sv
//
// We'll use the right-hand side for this operation:
//
// Bv = log2( B/NK )
// Sv = log2( NSx )
float Sv = log( (float) 0.3 * (float) iso ) / log(2);
float Bv = log( lux / ( (float) 0.3 * (float) 14 ) ) / log(2);
return( Bv + Sv );
Serial.println("get Bv+Sv");
}
float calc_exp_tm ( float ev, float aperture ) {
// Ev = Av + Tv = Bv + Sv
// need to determine Tv value, so Ev - Av = Tv
// Av = log2(Aperture^2)
// Tv = log2( 1/T ) = log2(T) = 2^(Ev - Av)
float exp_tm = ev - ( log( pow(aperture, 2) ) / log(2) );
float exp_log = pow(2, exp_tm);
return( exp_log );
Serial.println("get exp_log");
}
unsigned int calc_exp_ms( float exp_tm ) {
unsigned int cur_exp_tm = 0;
// Calculate mS of exposure, given a divisor exposure time.
if (exp_tm >= 2 ) {
// Deal with times less than or equal to half a second
if (exp_tm >= (float) int(exp_tm) + (float) 0.5 ) {
// Round up
exp_tm = int(exp_tm) + 1;
}
else {
// Round down
exp_tm = int(exp_tm);
}
cur_exp_tm = 1000 / exp_tm;
}
else if( exp_tm >= 1 ) {
// Deal with times larger than 1/2 second
float disp_v = 1 / exp_tm;
// Get first significant digit
disp_v = int( disp_v * 10 );
cur_exp_tm = ( 1000 * disp_v ) / 10;
}
else {
// Times larger than 1 second
int disp_v = int( (float) 1 / exp_tm);
cur_exp_tm = 1000 * disp_v;
}
return(cur_exp_tm);
Serial.println("get cur_exp_tm");
}
float calc_exp_aperture( float ev, float exp_tm ) {
float exp_apt = ev - ( log( (float) 1 / exp_tm ) / log(2) );
float apt_log = pow(2, exp_apt);
return( apt_log );
Serial.println("get apt_log");
}