Почему Clojure в 10 раз медленнее, чем Python для эквивалентного решения Euler 50? - PullRequest
15 голосов
/ 09 ноября 2011

Я недавно начал изучать Clojure и решил попрактиковаться в задачах Эйлера, чтобы освоить доступные структуры данных и попрактиковаться в рекурсии и зацикливании.

Я пробовал различные подходы к Задаче 50 , но, что бы я ни делал, поиск решения для 1000000 так и не закончился. После того, как я посмотрел, что делают другие, я догадался, что то, что я делаю, тоже не должно длиться вечно, поэтому я набрал эквивалентный алгоритм в Python, чтобы увидеть, заключается ли проблема в моем непонимании некоторых вещей Clojure или в настройках Java. Python закончил через 10 секунд. Для простых чисел до 100000 версия Python заканчивается за 0,5 секунды, Clojure - за 5 *. 1005 *

Я публикую версию Clojure, которая была создана специально для соответствия коду Python. Можете ли вы помочь мне понять, почему существует такая разница в производительности? Должен ли я использовать unchecked-add, подсказки типа, примитивы (но где?) Или что?

Итак, вот Clojure:

(defn prime? [n]
  (let [r (int (Math/sqrt n))]
    (loop [d 2]
      (cond
        (= n 1) false
        (> d r) true
        (zero? (rem n d)) false
        :other (recur (inc d))))))

(defn primes []
  (filter prime? (iterate inc 2)))


(defn cumulative-sum [s]
  (reduce 
    (fn [v, x] (conj v (+ (last v) x))) 
    [(first s)] 
    (rest s)))


(defn longest-seq-under [n]
  "Longest prime seq with sum under n"
  (let [ps (vec (take-while #(< % n) (primes))) ; prime numbers up to n
        prime-set (set ps)  ; set for testing of inclusion
        cs (cumulative-sum ps)
        cnt (count ps)
        max-len (count (take-while #(< % n) cs)) ; cannot have longer sequences
        sub-sum (fn [i j] ; sum of primes between the i-th and j-th      
                  (- (cs j) (get cs (dec i) 0)))
        seq-with-len (fn [m] ; try m length prime sequences and return the first where the sum is prime
                       (loop [i 0] ; try with the lowest sum
                         (if (> i (- cnt m)) ; there are no more elements for and m length sequence
                           nil ; could not find any
                           (let [j (+ i (dec m)) ; fix length
                                 s (sub-sum i j)]
                             (if (>= s n) ; overshoot
                               nil
                               (if (prime-set s) ; sum is prime
                                 [i (inc j)] ; we just looked for the first
                                 (recur (inc i))))))))] ; shift window
        (loop [m max-len] ; try with the longest sequence
          (if (not (zero? m))
            (let [[i j] (seq-with-len m) ]
              (if j 
                (subvec ps i j)
                (recur (dec m))))))))                    



(assert (= [2 3 5 7 11 13] (longest-seq-under 100)))

(let [s1000  (longest-seq-under 1000)]
  (assert (= 21 (count s1000)))
  (assert (= 953 (reduce + s1000))))

; (time (reduce + (longest-seq-under 100000))) ; "Elapsed time: 5707.784369 msecs"

А вот в Python то же самое:

from math import sqrt
from itertools import takewhile

def is_prime(n) :
    for i in xrange(2, int(sqrt(n))+1) :
        if n % i == 0 :
            return False
    return True

def next_prime(n):
    while not is_prime(n) :
        n += 1
    return n

def primes() :
    i = 1
    while True :
        i = next_prime(i+1)
        yield i

def cumulative_sum(s):
    cs = []
    css = 0
    for si in s :
        css += si
        cs.append( css )
    return cs


def longest_seq_under(n) :
    ps = list(takewhile( lambda p : p < n, primes()))
    pss = set(ps)
    cs = cumulative_sum(ps)
    cnt = len(ps)
    max_len = len(list(takewhile(lambda s : s < n, cs)))

    def subsum(i, j):
        return cs[j] - (cs[i-1] if i > 0 else 0)

    def interval_with_length(m) :
        for i in xrange(0, cnt-m+1) :
            j = i + m - 1            
            sij = subsum(i,j)
            if sij >= n :
                return None, None
            if sij in pss : # prime
                return i, j+1
        return None, None

    for m in xrange(max_len, 0, -1) :
        f, t = interval_with_length(m)
        if t :
            return ps[f:t]


assert longest_seq_under(100) == [2, 3, 5, 7, 11, 13]
assert sum(longest_seq_under(1000)) == 953

# import timeit
# timeit.Timer("sum(longest_seq_under(100000))", "from __main__ import longest_seq_under").timeit(1) # 0.51235757617223499

Спасибо

Ответы [ 2 ]

15 голосов
/ 09 ноября 2011

Я думаю, что замедление происходит из-за количества повторений последовательностей в longest-seq-under; каждая из этих итераций берет свое. Вот быстрая курящая версия, основанная на комбинации вашего кода и ответа, отправленного здесь . Обратите внимание, что primes ленив, поэтому мы можем связать его с def против defn:

(defn prime? [n]
  (let [r (int (Math/sqrt n))]
    (loop [d 2]
      (cond (= n 1) false
            (> d r) true
            (zero? (rem n d)) false
            :else (recur (inc d))))))

(def primes (filter prime? (iterate inc 2)))

(defn make-seq-accumulator
  [[x & xs]]
  (map first (iterate
              (fn [[sum [s & more]]]
                [(+ sum s) more])
              [x xs])))

(def prime-sums
  (conj (make-seq-accumulator primes) 0))

(defn euler-50 [goal]
  (loop [c 1]
    (let [bots (reverse (take c prime-sums))
          tops (take c (reverse (take-while #(> goal (- % (last bots)))
                                            (rest prime-sums))))]
      (or (some #(when (prime? %) %)
                (map - tops bots))
          (recur (inc c))))))

Это закончилось примерно за 6 мс на моей машине:

user> (time (euler-50 1000000))
"Elapsed time: 6.29 msecs"
997651
4 голосов
/ 10 ноября 2011

Я приму свой собственный комментарий в качестве ответа на вопрос, почему Python работал, а Clojure - нет: использование last вектора является линейной операцией, которая препятствует вычислению накопленной суммы так, как я планировал.

Обновление функции для использования переходного вектора, подобного этому:

(defn cumulative-sum-2 [s]
  (loop [[x & xs] s
         ss 0
         acc (transient [])]
    (if x      
      (let [ssx (+ ss x)]
        (recur xs ssx (conj! acc ssx)))
      (persistent! acc))))

приводит к тому, что версия Clojure работает только вдвое дольше, чем Python.Я надеялся, что Clojure будет быстрее, чем Python, для тех же операций, интересно, что я все еще что-то упускаю.Кстати использую 1.2.

Спасибо

...