Как сделать автозаполнение запроса / предложения в Lucene? - PullRequest
47 голосов
/ 23 сентября 2008

Я ищу способ сделать автозаполнение запроса / предложения в Lucene. Я немного погуглил и немного поиграл, но все примеры, которые я видел, похоже, настраивают фильтры в Solr. Мы не используем Solr и не планируем переходить на использование Solr в ближайшем будущем, и Solr, очевидно, просто все равно обходит Lucene, так что я думаю, что должен быть способ сделать это!

Я изучил использование EdgeNGramFilter и понял, что мне нужно запустить фильтр для полей индекса и вывести токены, а затем сравнить их с введенным запросом ... Я просто пытаюсь сделать связь между этими двумя частями кода, так что помощь очень ценится!

Чтобы понять, что я ищу (я понял, что я не слишком ясен, извините) - я ищу решение, при котором при поиске термина он возвращает список предложенных запросов. , При вводе 'inter' в поле поиска, он вернется со списком предложенных запросов, таких как «интернет», «международный» и т. Д.

Ответы [ 5 ]

37 голосов
/ 23 сентября 2008

Основываясь на ответе @Alexandre Victoor, я написал небольшой класс, основанный на проверке орфографии Lucene, в пакете contrib (и с использованием включенного в него LuceneDictionary), который выполняет именно то, что я хочу.

Это позволяет повторно индексировать из одного исходного индекса с одним полем и предоставляет предложения для терминов. Результаты сортируются по количеству соответствующих документов с этим термином в исходном индексе, поэтому сначала появляются более популярные термины. Кажется, работает довольно хорошо:)

import java.io.IOException;
import java.io.Reader;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.List;
import java.util.Map;

import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.ISOLatin1AccentFilter;
import org.apache.lucene.analysis.LowerCaseFilter;
import org.apache.lucene.analysis.StopFilter;
import org.apache.lucene.analysis.TokenStream;
import org.apache.lucene.analysis.ngram.EdgeNGramTokenFilter;
import org.apache.lucene.analysis.ngram.EdgeNGramTokenFilter.Side;
import org.apache.lucene.analysis.standard.StandardFilter;
import org.apache.lucene.analysis.standard.StandardTokenizer;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;
import org.apache.lucene.index.CorruptIndexException;
import org.apache.lucene.index.IndexReader;
import org.apache.lucene.index.IndexWriter;
import org.apache.lucene.index.Term;
import org.apache.lucene.search.IndexSearcher;
import org.apache.lucene.search.Query;
import org.apache.lucene.search.ScoreDoc;
import org.apache.lucene.search.Sort;
import org.apache.lucene.search.TermQuery;
import org.apache.lucene.search.TopDocs;
import org.apache.lucene.search.spell.LuceneDictionary;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;

/**
 * Search term auto-completer, works for single terms (so use on the last term
 * of the query).
 * <p>
 * Returns more popular terms first.
 * 
 * @author Mat Mannion, M.Mannion@warwick.ac.uk
 */
public final class Autocompleter {

    private static final String GRAMMED_WORDS_FIELD = "words";

    private static final String SOURCE_WORD_FIELD = "sourceWord";

    private static final String COUNT_FIELD = "count";

    private static final String[] ENGLISH_STOP_WORDS = {
    "a", "an", "and", "are", "as", "at", "be", "but", "by",
    "for", "i", "if", "in", "into", "is",
    "no", "not", "of", "on", "or", "s", "such",
    "t", "that", "the", "their", "then", "there", "these",
    "they", "this", "to", "was", "will", "with"
    };

    private final Directory autoCompleteDirectory;

    private IndexReader autoCompleteReader;

    private IndexSearcher autoCompleteSearcher;

    public Autocompleter(String autoCompleteDir) throws IOException {
        this.autoCompleteDirectory = FSDirectory.getDirectory(autoCompleteDir,
                null);

        reOpenReader();
    }

    public List<String> suggestTermsFor(String term) throws IOException {
        // get the top 5 terms for query
        Query query = new TermQuery(new Term(GRAMMED_WORDS_FIELD, term));
        Sort sort = new Sort(COUNT_FIELD, true);

        TopDocs docs = autoCompleteSearcher.search(query, null, 5, sort);
        List<String> suggestions = new ArrayList<String>();
        for (ScoreDoc doc : docs.scoreDocs) {
            suggestions.add(autoCompleteReader.document(doc.doc).get(
                    SOURCE_WORD_FIELD));
        }

        return suggestions;
    }

    @SuppressWarnings("unchecked")
    public void reIndex(Directory sourceDirectory, String fieldToAutocomplete)
            throws CorruptIndexException, IOException {
        // build a dictionary (from the spell package)
        IndexReader sourceReader = IndexReader.open(sourceDirectory);

        LuceneDictionary dict = new LuceneDictionary(sourceReader,
                fieldToAutocomplete);

        // code from
        // org.apache.lucene.search.spell.SpellChecker.indexDictionary(
        // Dictionary)
        IndexReader.unlock(autoCompleteDirectory);

        // use a custom analyzer so we can do EdgeNGramFiltering
        IndexWriter writer = new IndexWriter(autoCompleteDirectory,
        new Analyzer() {
            public TokenStream tokenStream(String fieldName,
                    Reader reader) {
                TokenStream result = new StandardTokenizer(reader);

                result = new StandardFilter(result);
                result = new LowerCaseFilter(result);
                result = new ISOLatin1AccentFilter(result);
                result = new StopFilter(result,
                    ENGLISH_STOP_WORDS);
                result = new EdgeNGramTokenFilter(
                    result, Side.FRONT,1, 20);

                return result;
            }
        }, true);

        writer.setMergeFactor(300);
        writer.setMaxBufferedDocs(150);

        // go through every word, storing the original word (incl. n-grams) 
        // and the number of times it occurs
        Map<String, Integer> wordsMap = new HashMap<String, Integer>();

        Iterator<String> iter = (Iterator<String>) dict.getWordsIterator();
        while (iter.hasNext()) {
            String word = iter.next();

            int len = word.length();
            if (len < 3) {
                continue; // too short we bail but "too long" is fine...
            }

            if (wordsMap.containsKey(word)) {
                throw new IllegalStateException(
                        "This should never happen in Lucene 2.3.2");
                // wordsMap.put(word, wordsMap.get(word) + 1);
            } else {
                // use the number of documents this word appears in
                wordsMap.put(word, sourceReader.docFreq(new Term(
                        fieldToAutocomplete, word)));
            }
        }

        for (String word : wordsMap.keySet()) {
            // ok index the word
            Document doc = new Document();
            doc.add(new Field(SOURCE_WORD_FIELD, word, Field.Store.YES,
                    Field.Index.UN_TOKENIZED)); // orig term
            doc.add(new Field(GRAMMED_WORDS_FIELD, word, Field.Store.YES,
                    Field.Index.TOKENIZED)); // grammed
            doc.add(new Field(COUNT_FIELD,
                    Integer.toString(wordsMap.get(word)), Field.Store.NO,
                    Field.Index.UN_TOKENIZED)); // count

            writer.addDocument(doc);
        }

        sourceReader.close();

        // close writer
        writer.optimize();
        writer.close();

        // re-open our reader
        reOpenReader();
    }

    private void reOpenReader() throws CorruptIndexException, IOException {
        if (autoCompleteReader == null) {
            autoCompleteReader = IndexReader.open(autoCompleteDirectory);
        } else {
            autoCompleteReader.reopen();
        }

        autoCompleteSearcher = new IndexSearcher(autoCompleteReader);
    }

    public static void main(String[] args) throws Exception {
        Autocompleter autocomplete = new Autocompleter("/index/autocomplete");

        // run this to re-index from the current index, shouldn't need to do
        // this very often
        // autocomplete.reIndex(FSDirectory.getDirectory("/index/live", null),
        // "content");

        String term = "steve";

        System.out.println(autocomplete.suggestTermsFor(term));
        // prints [steve, steven, stevens, stevenson, stevenage]
    }

}
25 голосов
/ 08 февраля 2012

Вот транслитерация реализации Mat в C # для Lucene.NET, а также фрагмент для подключения текстового поля с помощью функции автозаполнения jQuery.

<input id="search-input" name="query" placeholder="Search database." type="text" />

... Автозаполнение JQuery:

// don't navigate away from the field when pressing tab on a selected item
$( "#search-input" ).keydown(function (event) {
    if (event.keyCode === $.ui.keyCode.TAB && $(this).data("autocomplete").menu.active) {
        event.preventDefault();
    }
});

$( "#search-input" ).autocomplete({
    source: '@Url.Action("SuggestTerms")', // <-- ASP.NET MVC Razor syntax
    minLength: 2,
    delay: 500,
    focus: function () {
        // prevent value inserted on focus
        return false;
    },
    select: function (event, ui) {
        var terms = this.value.split(/\s+/);
        terms.pop(); // remove dropdown item
        terms.push(ui.item.value.trim()); // add completed item
        this.value = terms.join(" "); 
        return false;
    },
 });

... вот код контроллера ASP.NET MVC:

    //
    // GET: /MyApp/SuggestTerms?term=something
    public JsonResult SuggestTerms(string term)
    {
        if (string.IsNullOrWhiteSpace(term))
            return Json(new string[] {});

        term = term.Split().Last();

        // Fetch suggestions
        string[] suggestions = SearchSvc.SuggestTermsFor(term).ToArray();

        return Json(suggestions, JsonRequestBehavior.AllowGet);
    }

... а вот код Мата в C #:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using Lucene.Net.Store;
using Lucene.Net.Index;
using Lucene.Net.Search;
using SpellChecker.Net.Search.Spell;
using Lucene.Net.Analysis;
using Lucene.Net.Analysis.Standard;
using Lucene.Net.Analysis.NGram;
using Lucene.Net.Documents;

namespace Cipher.Services
{
    /// <summary>
    /// Search term auto-completer, works for single terms (so use on the last term of the query).
    /// Returns more popular terms first.
    /// <br/>
    /// Author: Mat Mannion, M.Mannion@warwick.ac.uk
    /// <seealso cref="/68687/kak-sdelat-avtozapolnenie-zaprosa-predlozheniya-v-lucene"/>
    /// </summary>
    /// 
    public class SearchAutoComplete {

        public int MaxResults { get; set; }

        private class AutoCompleteAnalyzer : Analyzer
        {
            public override TokenStream  TokenStream(string fieldName, System.IO.TextReader reader)
            {
                TokenStream result = new StandardTokenizer(kLuceneVersion, reader);

                result = new StandardFilter(result);
                result = new LowerCaseFilter(result);
                result = new ASCIIFoldingFilter(result);
                result = new StopFilter(false, result, StopFilter.MakeStopSet(kEnglishStopWords));
                result = new EdgeNGramTokenFilter(
                    result, Lucene.Net.Analysis.NGram.EdgeNGramTokenFilter.DEFAULT_SIDE,1, 20);

                return result;
            }
        }

        private static readonly Lucene.Net.Util.Version kLuceneVersion = Lucene.Net.Util.Version.LUCENE_29;

        private static readonly String kGrammedWordsField = "words";

        private static readonly String kSourceWordField = "sourceWord";

        private static readonly String kCountField = "count";

        private static readonly String[] kEnglishStopWords = {
            "a", "an", "and", "are", "as", "at", "be", "but", "by",
            "for", "i", "if", "in", "into", "is",
            "no", "not", "of", "on", "or", "s", "such",
            "t", "that", "the", "their", "then", "there", "these",
            "they", "this", "to", "was", "will", "with"
        };

        private readonly Directory m_directory;

        private IndexReader m_reader;

        private IndexSearcher m_searcher;

        public SearchAutoComplete(string autoCompleteDir) : 
            this(FSDirectory.Open(new System.IO.DirectoryInfo(autoCompleteDir)))
        {
        }

        public SearchAutoComplete(Directory autoCompleteDir, int maxResults = 8) 
        {
            this.m_directory = autoCompleteDir;
            MaxResults = maxResults;

            ReplaceSearcher();
        }

        /// <summary>
        /// Find terms matching the given partial word that appear in the highest number of documents.</summary>
        /// <param name="term">A word or part of a word</param>
        /// <returns>A list of suggested completions</returns>
        public IEnumerable<String> SuggestTermsFor(string term) 
        {
            if (m_searcher == null)
                return new string[] { };

            // get the top terms for query
            Query query = new TermQuery(new Term(kGrammedWordsField, term.ToLower()));
            Sort sort = new Sort(new SortField(kCountField, SortField.INT));

            TopDocs docs = m_searcher.Search(query, null, MaxResults, sort);
            string[] suggestions = docs.ScoreDocs.Select(doc => 
                m_reader.Document(doc.Doc).Get(kSourceWordField)).ToArray();

            return suggestions;
        }


        /// <summary>
        /// Open the index in the given directory and create a new index of word frequency for the 
        /// given index.</summary>
        /// <param name="sourceDirectory">Directory containing the index to count words in.</param>
        /// <param name="fieldToAutocomplete">The field in the index that should be analyzed.</param>
        public void BuildAutoCompleteIndex(Directory sourceDirectory, String fieldToAutocomplete)
        {
            // build a dictionary (from the spell package)
            using (IndexReader sourceReader = IndexReader.Open(sourceDirectory, true))
            {
                LuceneDictionary dict = new LuceneDictionary(sourceReader, fieldToAutocomplete);

                // code from
                // org.apache.lucene.search.spell.SpellChecker.indexDictionary(
                // Dictionary)
                //IndexWriter.Unlock(m_directory);

                // use a custom analyzer so we can do EdgeNGramFiltering
                var analyzer = new AutoCompleteAnalyzer();
                using (var writer = new IndexWriter(m_directory, analyzer, true, IndexWriter.MaxFieldLength.LIMITED))
                {
                    writer.MergeFactor = 300;
                    writer.SetMaxBufferedDocs(150);

                    // go through every word, storing the original word (incl. n-grams) 
                    // and the number of times it occurs
                    foreach (string word in dict)
                    {
                        if (word.Length < 3)
                            continue; // too short we bail but "too long" is fine...

                        // ok index the word
                        // use the number of documents this word appears in
                        int freq = sourceReader.DocFreq(new Term(fieldToAutocomplete, word));
                        var doc = MakeDocument(fieldToAutocomplete, word, freq);

                        writer.AddDocument(doc);
                    }

                    writer.Optimize();
                }

            }

            // re-open our reader
            ReplaceSearcher();
        }

        private static Document MakeDocument(String fieldToAutocomplete, string word, int frequency)
        {
            var doc = new Document();
            doc.Add(new Field(kSourceWordField, word, Field.Store.YES,
                    Field.Index.NOT_ANALYZED)); // orig term
            doc.Add(new Field(kGrammedWordsField, word, Field.Store.YES,
                    Field.Index.ANALYZED)); // grammed
            doc.Add(new Field(kCountField,
                    frequency.ToString(), Field.Store.NO,
                    Field.Index.NOT_ANALYZED)); // count
            return doc;
        }

        private void ReplaceSearcher() 
        {
            if (IndexReader.IndexExists(m_directory))
            {
                if (m_reader == null)
                    m_reader = IndexReader.Open(m_directory, true);
                else
                    m_reader.Reopen();

                m_searcher = new IndexSearcher(m_reader);
            }
            else
            {
                m_searcher = null;
            }
        }


    }
}
5 голосов
/ 26 ноября 2013

мой код на основе lucene 4.2 , может вам помочь

import java.io.File;
import java.io.IOException;

import org.apache.lucene.analysis.miscellaneous.PerFieldAnalyzerWrapper;
import org.apache.lucene.index.DirectoryReader;
import org.apache.lucene.index.IndexWriterConfig;
import org.apache.lucene.index.IndexWriterConfig.OpenMode;
import org.apache.lucene.search.spell.Dictionary;
import org.apache.lucene.search.spell.LuceneDictionary;
import org.apache.lucene.search.spell.PlainTextDictionary;
import org.apache.lucene.search.spell.SpellChecker;
import org.apache.lucene.store.Directory;
import org.apache.lucene.store.FSDirectory;
import org.apache.lucene.store.IOContext;
import org.apache.lucene.store.RAMDirectory;
import org.apache.lucene.util.Version;
import org.wltea4pinyin.analyzer.lucene.IKAnalyzer4PinYin;


/**
 * 
 * 
 * @author <a href="mailto:liu.gang@renren-inc.com"></a>
 * @version 2013-11-25上午11:13:59
 */
public class LuceneSpellCheckerDemoService {

private static final String INDEX_FILE = "/Users/r/Documents/jar/luke/youtui/index";
private static final String INDEX_FILE_SPELL = "/Users/r/Documents/jar/luke/spell";

private static final String INDEX_FIELD = "app_name_quanpin";

public static void main(String args[]) {

    try {
        //
        PerFieldAnalyzerWrapper wrapper = new PerFieldAnalyzerWrapper(new IKAnalyzer4PinYin(
                true));

        //  read index conf
        IndexWriterConfig conf = new IndexWriterConfig(Version.LUCENE_42, wrapper);
        conf.setOpenMode(OpenMode.CREATE_OR_APPEND);

        // read dictionary
        Directory directory = FSDirectory.open(new File(INDEX_FILE));
        RAMDirectory ramDir = new RAMDirectory(directory, IOContext.READ);
        DirectoryReader indexReader = DirectoryReader.open(ramDir);

        Dictionary dic = new LuceneDictionary(indexReader, INDEX_FIELD);


        SpellChecker sc = new SpellChecker(FSDirectory.open(new File(INDEX_FILE_SPELL)));
        //sc.indexDictionary(new PlainTextDictionary(new File("myfile.txt")), conf, false);
        sc.indexDictionary(dic, conf, true);
        String[] strs = sc.suggestSimilar("zhsiwusdazhanjiangshi", 10);
        for (int i = 0; i < strs.length; i++) {
            System.out.println(strs[i]);
        }
        sc.close();
    } catch (IOException e) {
        e.printStackTrace();
    }
}


}
4 голосов
/ 11 июля 2012

В дополнение к вышеупомянутому (высоко ценимому) преобразованию post: re #, если вы используете .NET 3.5, вам нужно будет включить код для EdgeNGramTokenFilter - или, по крайней мере, я сделал - с помощью Lucene 2.9.2 - это Насколько я могу судить, в версии .NET отсутствует фильтр. Мне пришлось пойти и найти .NET 4 версию онлайн в 2.9.3 и портировать обратно - надеюсь, что это сделает процедуру менее болезненной для кого-то ...

Редактировать: Обратите также внимание, что массив, возвращаемый функцией SuggestTermsFor (), отсортирован по возрастанию, возможно, вы захотите изменить его, чтобы сначала получить самые популярные термины в вашем списке

using System.IO;
using System.Collections;
using Lucene.Net.Analysis;
using Lucene.Net.Analysis.Tokenattributes;
using Lucene.Net.Util;

namespace Lucene.Net.Analysis.NGram
{

/**
 * Tokenizes the given token into n-grams of given size(s).
 * <p>
 * This {@link TokenFilter} create n-grams from the beginning edge or ending edge of a input token.
 * </p>
 */
public class EdgeNGramTokenFilter : TokenFilter
{
    public static Side DEFAULT_SIDE = Side.FRONT;
    public static int DEFAULT_MAX_GRAM_SIZE = 1;
    public static int DEFAULT_MIN_GRAM_SIZE = 1;

    // Replace this with an enum when the Java 1.5 upgrade is made, the impl will be simplified
    /** Specifies which side of the input the n-gram should be generated from */
    public class Side
    {
        private string label;

        /** Get the n-gram from the front of the input */
        public static Side FRONT = new Side("front");

        /** Get the n-gram from the end of the input */
        public static Side BACK = new Side("back");

        // Private ctor
        private Side(string label) { this.label = label; }

        public string getLabel() { return label; }

        // Get the appropriate Side from a string
        public static Side getSide(string sideName)
        {
            if (FRONT.getLabel().Equals(sideName))
            {
                return FRONT;
            }
            else if (BACK.getLabel().Equals(sideName))
            {
                return BACK;
            }
            return null;
        }
    }

    private int minGram;
    private int maxGram;
    private Side side;
    private char[] curTermBuffer;
    private int curTermLength;
    private int curGramSize;
    private int tokStart;

    private TermAttribute termAtt;
    private OffsetAttribute offsetAtt;

    protected EdgeNGramTokenFilter(TokenStream input) : base(input)
    {
        this.termAtt = (TermAttribute)AddAttribute(typeof(TermAttribute));
        this.offsetAtt = (OffsetAttribute)AddAttribute(typeof(OffsetAttribute));
    }

    /**
     * Creates EdgeNGramTokenFilter that can generate n-grams in the sizes of the given range
     *
     * @param input {@link TokenStream} holding the input to be tokenized
     * @param side the {@link Side} from which to chop off an n-gram
     * @param minGram the smallest n-gram to generate
     * @param maxGram the largest n-gram to generate
     */
    public EdgeNGramTokenFilter(TokenStream input, Side side, int minGram, int maxGram)
        : base(input)
    {

        if (side == null)
        {
            throw new System.ArgumentException("sideLabel must be either front or back");
        }

        if (minGram < 1)
        {
            throw new System.ArgumentException("minGram must be greater than zero");
        }

        if (minGram > maxGram)
        {
            throw new System.ArgumentException("minGram must not be greater than maxGram");
        }

        this.minGram = minGram;
        this.maxGram = maxGram;
        this.side = side;
        this.termAtt = (TermAttribute)AddAttribute(typeof(TermAttribute));
        this.offsetAtt = (OffsetAttribute)AddAttribute(typeof(OffsetAttribute));
    }

    /**
     * Creates EdgeNGramTokenFilter that can generate n-grams in the sizes of the given range
     *
     * @param input {@link TokenStream} holding the input to be tokenized
     * @param sideLabel the name of the {@link Side} from which to chop off an n-gram
     * @param minGram the smallest n-gram to generate
     * @param maxGram the largest n-gram to generate
     */
    public EdgeNGramTokenFilter(TokenStream input, string sideLabel, int minGram, int maxGram)
        : this(input, Side.getSide(sideLabel), minGram, maxGram)
    {

    }

    public override bool IncrementToken()
    {
        while (true)
        {
            if (curTermBuffer == null)
            {
                if (!input.IncrementToken())
                {
                    return false;
                }
                else
                {
                    curTermBuffer = (char[])termAtt.TermBuffer().Clone();
                    curTermLength = termAtt.TermLength();
                    curGramSize = minGram;
                    tokStart = offsetAtt.StartOffset();
                }
            }
            if (curGramSize <= maxGram)
            {
                if (!(curGramSize > curTermLength         // if the remaining input is too short, we can't generate any n-grams
                    || curGramSize > maxGram))
                {       // if we have hit the end of our n-gram size range, quit
                    // grab gramSize chars from front or back
                    int start = side == Side.FRONT ? 0 : curTermLength - curGramSize;
                    int end = start + curGramSize;
                    ClearAttributes();
                    offsetAtt.SetOffset(tokStart + start, tokStart + end);
                    termAtt.SetTermBuffer(curTermBuffer, start, curGramSize);
                    curGramSize++;
                    return true;
                }
            }
            curTermBuffer = null;
        }
    }

    public override  Token Next(Token reusableToken)
    {
        return base.Next(reusableToken);
    }
    public override Token Next()
    {
        return base.Next();
    }
    public override void Reset()
    {
        base.Reset();
        curTermBuffer = null;
    }
}
}
4 голосов
/ 23 сентября 2008

Вы можете использовать класс PrefixQuery по индексу "словарь". Класс LuceneDictionary также может быть полезен.

Взгляните на эту статью, ссылки на которую приведены ниже. В нем объясняется, как реализовать функцию «Вы имели в виду?» доступны в современных поисковых системах, таких как Google. Вам может не понадобиться что-то сложное, как описано в статье. Однако в статье объясняется, как использовать пакет заклинаний Lucene.

Одним из способов создания индекса "словаря" является итерация по LuceneDictionary.

Надеюсь, это поможет

Вы имели в виду Lucene? (страница 1)

Вы имели в виду Lucene? (страница 2)

Вы имели в виду Lucene? (страница 3)

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...