У меня очень большие наборы данных, которые хранятся в двоичных файлах на жестком диске.Вот пример структуры файла:
Заголовок файла
149 Byte ASCII Header
Начало записи
4 Byte Int - Record Timestamp
Начало семпла
2 Byte Int - Data Stream 1 Sample
2 Byte Int - Data Stream 2 Sample
2 Byte Int - Data Stream 3 Sample
2 Byte Int - Data Stream 4 Sample
Конец семпла
Имеется 122 880 семплов на запись и 713 записей на файл.Это дает общий размер 700 910 521 байт.Частота дискретизации и количество записей иногда меняются, поэтому мне приходится кодировать для определения количества каждого файла.
В настоящее время код, который я использую для импорта этих данных в массивы, работает следующим образом:
from time import clock
from numpy import zeros , int16 , int32 , hstack , array , savez
from struct import unpack
from os.path import getsize
start_time = clock()
file_size = getsize(input_file)
with open(input_file,'rb') as openfile:
input_data = openfile.read()
header = input_data[:149]
record_size = int(header[23:31])
number_of_records = ( file_size - 149 ) / record_size
sample_rate = ( ( record_size - 4 ) / 4 ) / 2
time_series = zeros(0,dtype=int32)
t_series = zeros(0,dtype=int16)
x_series = zeros(0,dtype=int16)
y_series = zeros(0,dtype=int16)
z_series = zeros(0,dtype=int16)
for record in xrange(number_of_records):
time_stamp = array( unpack( '<l' , input_data[ 149 + (record * record_size) : 149 + (record * record_size) + 4 ] ) , dtype = int32 )
unpacked_record = unpack( '<' + str(sample_rate * 4) + 'h' , input_data[ 149 + (record * record_size) + 4 : 149 + ( (record + 1) * record_size ) ] )
record_t = zeros(sample_rate , dtype=int16)
record_x = zeros(sample_rate , dtype=int16)
record_y = zeros(sample_rate , dtype=int16)
record_z = zeros(sample_rate , dtype=int16)
for sample in xrange(sample_rate):
record_t[sample] = unpacked_record[ ( sample * 4 ) + 0 ]
record_x[sample] = unpacked_record[ ( sample * 4 ) + 1 ]
record_y[sample] = unpacked_record[ ( sample * 4 ) + 2 ]
record_z[sample] = unpacked_record[ ( sample * 4 ) + 3 ]
time_series = hstack ( ( time_series , time_stamp ) )
t_series = hstack ( ( t_series , record_t ) )
x_series = hstack ( ( x_series , record_x ) )
y_series = hstack ( ( y_series , record_y ) )
z_series = hstack ( ( z_series , record_z ) )
savez(output_file, t=t_series , x=x_series ,y=y_series, z=z_series, time=time_series)
end_time = clock()
print 'Total Time',end_time - start_time,'seconds'
В настоящее время это занимает около 250 секунд на файл 700 МБ, что мне кажется очень высоким.Есть ли более эффективный способ, которым я мог бы сделать это?
Окончательное решение
Использование метода numpy fromfile с настраиваемым dtype сокращает время выполнения до 9 секунд, в 27 раз быстрее, чем исходный код выше.Окончательный код приведен ниже.
from numpy import savez, dtype , fromfile
from os.path import getsize
from time import clock
start_time = clock()
file_size = getsize(input_file)
openfile = open(input_file,'rb')
header = openfile.read(149)
record_size = int(header[23:31])
number_of_records = ( file_size - 149 ) / record_size
sample_rate = ( ( record_size - 4 ) / 4 ) / 2
record_dtype = dtype( [ ( 'timestamp' , '<i4' ) , ( 'samples' , '<i2' , ( sample_rate , 4 ) ) ] )
data = fromfile(openfile , dtype = record_dtype , count = number_of_records )
time_series = data['timestamp']
t_series = data['samples'][:,:,0].ravel()
x_series = data['samples'][:,:,1].ravel()
y_series = data['samples'][:,:,2].ravel()
z_series = data['samples'][:,:,3].ravel()
savez(output_file, t=t_series , x=x_series ,y=y_series, z=z_series, fid=time_series)
end_time = clock()
print 'It took',end_time - start_time,'seconds'