Я пытался использовать split и tapply, чтобы поближе познакомиться с ними.Я знаю, что на этот вопрос уже был дан ответ, но я подумал, что добавлю еще одно решение, используя split (простите за уродство; я более чем открыт для обратной связи для улучшения; подумал, что, возможно, было какое-то применение для уменьшения кода):
sdf <-with(df, split(df, ID))
max.week <- sapply(seq_along(sdf), function(x) which.max(sdf[[x]][, 'week']))
data.frame(t(mapply(function(x, y) y[x, ], max.week, sdf)))
Я также подумал, почему у нас есть 7 ответов, что он был готов для эталона.Результаты могут вас удивить (использование rbenchmark с R2.14.1 на компьютере с Win 7):
# library(rbenchmark)
# benchmark(
# DATA.TABLE= {dt <- data.table(df, key="ID")
# dt[, .SD[which.max(outcome),], by=ID]},
# DO.CALL={do.call("rbind",
# by(df, INDICES=df$ID, FUN=function(DF) DF[which.max(DF$week),]))},
# PLYR=ddply(df, .(ID), function(X) X[which.max(X$week), ]),
# SPLIT={sdf <-with(df, split(df, ID))
# max.week <- sapply(seq_along(sdf), function(x) which.max(sdf[[x]][, 'week']))
# data.frame(t(mapply(function(x, y) y[x, ], max.week, sdf)))},
# MATCH.INDEX=df[rev(rownames(df)),][match(unique(df$ID), rev(df$ID)), ],
# AGGREGATE=df[cumsum(aggregate(week ~ ID, df, which.max)$week), ],
# #WHICH.MAX.INDEX=df[sapply(unique(df$ID), function(x) which.max(x==df$ID)), ],
# BRYANS.INDEX = df[cumsum(as.numeric(lapply(split(df$week, df$ID),
# which.max))), ],
# SPLIT2={sdf <-with(df, split(df, ID))
# df[cumsum(sapply(seq_along(sdf), function(x) which.max(sdf[[x]][, 'week']))),
# ]},
# TAPPLY=df[tapply(seq_along(df$ID), df$ID, function(x){tail(x,1)}),],
# columns = c( "test", "replications", "elapsed", "relative", "user.self","sys.self"),
# order = "test", replications = 1000, environment = parent.frame())
test replications elapsed relative user.self sys.self
6 AGGREGATE 1000 4.49 7.610169 2.84 0.05
7 BRYANS.INDEX 1000 0.59 1.000000 0.20 0.00
1 DATA.TABLE 1000 20.28 34.372881 11.98 0.00
2 DO.CALL 1000 4.67 7.915254 2.95 0.03
5 MATCH.INDEX 1000 1.07 1.813559 0.51 0.00
3 PLYR 1000 10.61 17.983051 5.07 0.00
4 SPLIT 1000 3.12 5.288136 1.81 0.00
8 SPLIT2 1000 1.56 2.644068 1.28 0.00
9 TAPPLY 1000 1.08 1.830508 0.88 0.00
Edit1: Я пропустил решение WHICH MAX, поскольку оно не возвращает правильные результатыи вернул AGGREGATE также решение, которое я хотел использовать (комплименты Брайана Гудрича) и обновленную версию split, SPLIT2, используя cumsum (мне понравилось это движение).
Edit 2: Дейсон также присоединился к решению, которое я бросил в тест, который тоже неплохо справился.