Распознавание контуров 2D фигур - PullRequest
1 голос
/ 26 ноября 2011

Я хочу реализовать распознавание формы / сопоставление похожих кривых (дискретных точечных массивов) в 2D.

Я нашел бумагу на предмете, но я несколько растерялся, когда он придетчтобы реализовать это в коде.

Я понял, что эту функцию нужно свернуть:

enter image description here

Но с чего мне начать?

  1. μ кажется измерением искажения, которое я хочу минимизировать.
  2. ψ представляется некоторым аргументом, который ограничен от 0 до π / 2
  3. "R - это параметр ", что означает?
  4. κ - это кривизна,?
  5. ξ - еще один параметр ...
  6. Гаххх

Может ли кто-нибудь изложить подход к этому на английском языке?А может быть, в каком-нибудь псевдокоде?

Ответы [ 2 ]

1 голос
/ 26 ноября 2011

Я думаю, что вряд ли вы сможете заставить это работать, не понимая математику, и способ понять математику - это проработать статью с самого начала;если вы переходите к последнему уравнению и пытаетесь его закодировать, естественно, это не имеет смысла.Вот ответы на ваши конкретные вопросы, для чего они стоят:

  1. μ действительно «измерение искажения», или стоимость деформации одной кривой в другую.
  2. indeed действительно ограничено [0 и π / 2].Это угол кривой (h, h-bar) (извините, я не знаю, как вводить специальные символы).
  3. «R - это параметр», что означает, что он произвольный, мера того, насколько важна ориентация относительно смещения.
  4. κ - кривизна, C, первая кривая.
  5. ξ - параметр, описывающий продвижение по обеим кривым.По мере продвижения ξ от 0 до L-тильды h (ξ) переходит от 0 до L, а h-bar (ξ) - от 0 до L-bar.
0 голосов
/ 26 ноября 2011

Мы начнем с некоторых определений:

  • Кривизна - это то, насколько кривая отклоняется от плоской.
  • A параметр определяет, какую кривую вы ищете.Например, f (x) = kx + m, k и m - параметры.

Что касается минимизации, вы можете посмотреть здесь: http://en.wikipedia.org/wiki/Calculus_of_variations

...