Я думаю split()
и unsplit()
- это один из способов.
dupMean <- function(x)
{
result <- split(x[, 2], x[, 1])
result <- lapply(result, mean)
result <- unsplit(result, unique(x[, 1]))
return(result)
}
Или, чтобы сохранить строку с plyr:
require(plyr)
dupMean <- function(x)
{
result <- split(x[, 2], x[, 1])
result <- laply(result, mean)
return(result)
}
Обновление: Просто для любопытства приведено сравнение различных предлагаемых функций.Рамнат (fn3) выглядит победителем на моем компьютере.
require(plyr)
require(data.table)
require(rbenchmark)
fn1 <- function(z){
z$var <- ave(z$var, z$id, FUN=mean)
return(unique(z))
}
fn2 <- function(z) {
t(sapply(split(z,z$id), function(x) sapply(x,mean)))
}
fn3 <- function(z){
data.table(z)[,list(var = mean(var)), 'id']
}
fn4 <- function(x)
{
result <- t(sapply(split(x,x$id), function(y) sapply(y,mean)))
return(result)
}
fn5 <- function(x)
{
x$var <- ave(x$var, x$id, FUN=mean)
x <- unique(x)
return(x)
}
fn6 <- function(x)
{
result <- do.call(rbind,lapply(split(x,x$id),function(chunk) mean(chunk$var)))
return(data.frame(id = unique(x[, 1]), var = result))
}
fn7 <- function(x)
{
result <- split(x[, 2], x[, 1])
result <- lapply(result, mean)
result <- unsplit(result, unique(x[, 1]))
return(data.frame(id = unique(x[, 1]), var = result))
}
fn8 <- function(x)
{
result <- split(x[, 2], x[, 1])
result <- laply(result, mean)
return(data.frame(id = unique(x[, 1]), var = result))
}
z <- data.frame(id = rep(c(1,1,2,2,3,4,5,6,6,7), 1e5), var = rnorm(1e6))
benchmark(f1 <- fn1(z), f2 <- fn2(z), f3 <- fn3(z), f4 <- fn4(z), f5 <- fn5(z), f6 <- fn6(z), f7 <- fn7(z), f8 <- fn8(z), replications = 2)
Результат:
test replications elapsed relative user.self sys.self
1 f1 <- fn1(z) 2 13.45 20.692308 13.27 0.15
2 f2 <- fn2(z) 2 3.54 5.446154 3.43 0.09
3 f3 <- fn3(z) 2 0.65 1.000000 0.54 0.10
4 f4 <- fn4(z) 2 3.62 5.569231 3.50 0.09
5 f5 <- fn5(z) 2 13.57 20.876923 13.25 0.25
6 f6 <- fn6(z) 2 3.53 5.430769 3.36 0.14
7 f7 <- fn7(z) 2 3.34 5.138462 3.28 0.03
8 f8 <- fn8(z) 2 3.34 5.138462 3.26 0.03