Если n является двоичной дробью, то n = a / 2 k для целых чисел a и k .
Это означает, что n = ( a · 5 k ) / (2 k · 5 k ) = ( a · 5 k ) / 10 k
Таким образом, каждая двоичная дробь является десятичной дробью.
Inв общем случае каждая дробь к основанию N также является дробью к основанию M тогда и только тогда, когда N делит M k для некоторых k (или, что эквивалентно, если каждый простой множитель N также является простым фактором M ),Аргумент, аналогичный приведенному выше для 2 и 10, обрабатывает направление «если».Для направления «только если», вот вам набросок доказательства для заполнения: предположим, что 1 / N = a / M k , затем M k = a · N , следовательно N делит M k .
Таким образом, двоичный код можно преобразовать в десятичную без потерь, поскольку 2 - это коэффициент 10, нодесятичная дробь не может быть преобразована в двоичную без потерь, потому что 5 - это коэффициент 10, но не коэффициент 2.