Я реализовал идею, представленную в ответе от woliveirajr : с помощью генератора псевдослучайных чисел Blum Blum в его явной (не итеративной) форме вместе с дайджестом сообщениячтобы получить правильный индекс из аргументов.
(Вы также можете взять этот источник из моего репозитория github .)
package de.fencing_game.paul.examples;
import java.math.BigInteger;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.Random;
/**
* A pseudo random number generator, which does not
* produce a series of numbers, but each number determined by
* some input (and independent of earlier numbers).
*<p>
* This is based on the
* <a href="http://en.wikipedia.org/wiki/Blum_Blum_Shub">Blum Blum Shub
* algorithm</a>, combined with the SHA-1 message digest to get the
* right index.
*</p>
*<p>
* Inspired by the question
* <a href="https://stackoverflow.com/q/6586042/600500">Algorithm
* for generating a three dimensional random number space</a> on
* Stack Overflow, and the answer from woliveirajr.
*/
public class PseudoRandom {
/**
* An instance of this class represents a range of
* integer numbers, both endpoints inclusive.
*/
public static final class Range {
public int min;
public int max;
public Range(int min, int max) {
this.min = min;
this.max = max;
}
/**
* clips a (positive) BigInteger to the range represented
* by this object.
* @returns an integer between min and max, inclusive.
*/
final int clip(BigInteger bigVal) {
BigInteger modulus =
BigInteger.valueOf(max + 1L - min);
return (int)(min + bigVal.mod(modulus).longValue());
}
}
/* M = p * q =
510458987753305598818664158496165644577818051165198667838943583049282929852810917684801057127 *
1776854827630587786961501611493551956300146782768206322414884019587349631246969724030273647
*/
/**
* A big number, composed of two large primes.
*/
private static final BigInteger M =
new BigInteger("90701151669688414188903413878244126959941449657"+
"82009133495922185615411523457607691918744187485"+
"10492533485214517262505932675573506751182663319"+
"285975046876611245165890299147416689632169");
/* λ(M) = lcm(p-1, q-1) */
/**
* The value of λ(M), where λ is the Carmichael function.
* This is the lowest common multiple of the predecessors of
* the two factors of M.
*/
private static final BigInteger lambdaM =
new BigInteger("53505758348442070944517069391220634799707248289"+
"10045667479610928077057617288038459593720911813"+
"73249762745139558184229125081884863164923576762"+
"05906844204771187443203120630003929150698");
/**
* The number 2 as a BigInteger, for use in the calculations.
*/
private static final BigInteger TWO = BigInteger.valueOf(2);
/**
* the modular square of the seed value.
*/
private BigInteger s_0;
/**
* The MessageDigest used to convert input data
* to an index for our PRNG.
*/
private MessageDigest md;
/**
* Creates a new PseudoRandom instance, using the given seed.
*/
public PseudoRandom(BigInteger seed) {
try {
this.md = MessageDigest.getInstance("SHA-1");
}
catch(NoSuchAlgorithmException ex) {
throw new RuntimeException(ex);
}
initializeSeed(seed);
}
/**
* Creates a new PseudoRandom instance, seeded by the given seed.
*/
public PseudoRandom(byte[] seed) {
this(new BigInteger(1, seed));
}
/**
* Creates a new PseudoRandom instance,
* seeded by the current system time.
*/
public PseudoRandom() {
this(BigInteger.valueOf(System.currentTimeMillis()));
}
/**
* Transforms the initial seed into some value that is
* usable by the generator. (This is completely deterministic.)
*/
private void initializeSeed(BigInteger proposal) {
// we want our seed be big enough so s^2 > M.
BigInteger s = proposal;
while(s.bitLength() <= M.bitLength()/2) {
s = s.shiftLeft(10);
}
// we want gcd(s, M) = 1
while(!M.gcd(s).equals(BigInteger.ONE)) {
s = s.add(BigInteger.ONE);
}
// we save s_0 = s^2 mod M
this.s_0 = s.multiply(s).mod(M);
}
/**
* calculates {@code x_k = r.clip( s_k )}.
*/
private int calculate(Range r, BigInteger k) {
BigInteger exp = TWO.modPow(k, lambdaM);
BigInteger s_k = s_0.modPow(exp, M);
return r.clip(s_k);
}
/**
* returns a number given by a range, determined by the given input.
*/
public int getNumber(Range r, byte[] input) {
byte[] dig;
synchronized(md) {
md.reset();
md.update(input);
dig = md.digest();
}
return calculate(r, new BigInteger(1, dig));
}
/**
* returns a number given by a range, determined by the given input.
*/
public int getNumber(Range r, int... input) {
byte[] dig;
synchronized(md) {
md.reset();
for(int i : input) {
md.update(new byte[]{ (byte)(i >> 24), (byte)(i >> 16),
(byte)(i >> 8), (byte)(i >> 0)} );
}
dig = md.digest();
}
return calculate(r, new BigInteger(1, dig));
}
/**
* Test method.
*/
public static void main(String[] test) {
PseudoRandom pr = new PseudoRandom("Hallo Welt".getBytes());
Range r = new Range(10, 30);
for(int i = 0; i < 10; i++) {
System.out.println("x("+i+") = " + pr.getNumber(r, i));
}
for(int i = 0; i < 5; i++) {
for(int j = 0; j < 5; j++) {
System.out.println("x("+i+", "+j+") = " +
pr.getNumber(r, i, j));
}
}
// to show that it really is deterministic:
for(int i = 0; i < 10; i++) {
System.out.println("x("+i+") = " + pr.getNumber(r, i));
}
}
}
Я произвольно выбрал эти большие простые числа- Я не знаю, действительно ли они криптографически безопасны (например, имеют ли p-1
и q-1
необходимые свойства факторизации).Если вам действительно нужна безопасность, вы должны хранить эти числа в секрете (например, генерировать их самостоятельно).
Кроме того, я использую входное начальное число для генерации s
(и s_0
) - вместо этого можно было бы использоватьисправлено s
(с известными хорошими свойствами, например, большим периодом), и использовалось начальное число в качестве входных данных для дайджеста сообщения (вместе с входным значением, которое я здесь использую).
Конечно, можно было бы также напрямую использовать вывод дайджеста сообщения вместо того, чтобы использовать его только как индекс для BBS.