Пример набора данных (строки были случайным образом извлечены из гораздо большей матрицы)
import numpy as np
test = [[np.nan, np.nan, 0.217, 0.562],
[np.nan, np.nan, 0.217, 0.562],
[0.269, 0.0, 0.217, 0.562],
[np.nan, np.nan, 0.217, -0.953],
[np.nan, np.nan, 0.217, -0.788],
[0.75, 0.0, 0.217, 0.326],
[0.207, 0.0, 0.217, 0.814],
[np.nan, np.nan, 0.217, 0.562],
[np.nan, np.nan, 0.217, -0.022],
[np.nan, np.nan, 0.217, 0.562],
[np.nan, np.nan, 0.217, -0.953],
[np.nan, np.nan, 0.217, -0.953],
[0.078, 0.0, 0.217, -0.953],
[np.nan, np.nan, 0.217, -0.953],
[0.078, 0.0, 0.217, 0.562]]
maskedarr = np.ma.array(test)
np.ma.cov(maskedarr,rowvar=False,allow_masked=True)
[[-- -- -- --]
[-- -- -- --]
[-- -- 0.0 0.0]
[-- -- 0.0 0.554]]
Однако, если я использую R,
import rpy2.robjects as robjects
robjects.globalenv['maskedarr'] = robjects.FloatVector(maskedarr.T.flatten())
robjects.r('''
dim(maskedarr) <- c(%d,%d)
maskedarr[] <- replace(maskedarr,!is.finite(maskedarr),NA)
''' % maskedarr.shape)
robjects.r('''
print(cov(maskedarr,use="pairwise"))
''')
[,1] [,2] [,3] [,4]
[1,] 0.0769733 0 0 0.0428294
[2,] 0.0000000 0 0 0.0000000
[3,] 0.0000000 0 0 0.0000000
[4,] 0.0428294 0 0 0.5536484
, я получаю совсем другую матрицу.Если попарные корреляции взяты с удалением nan
только для пары, то я ожидал бы что-то вроде ответа R - numpy.ma.cov
говорит, что allow_masked=True
позволит рассчитать эти парные корреляции, но, похоже, не так,Я что-то упустил?