ПРИМЕРНО, но быстрым решением будет выборка 4 репрезентативных точек из данных и решение полиномиального уравнения для этих точек.
Что касается выборки , выможно разделить данные на равные сектора и вычислить среднее значение X и Y для каждого сектора - разделение может быть выполнено с использованием квартилей значений X, средних значений X, min(x)+(max(x)-min(x))/4
или любого другого значения, которое вы считаете наиболее подходящим.
Для иллюстрации выборки по квартилям (т.е. по номерам строк) :
Что касается решая , я использовал numberempire.com , чтобы решить эти * уравнения для переменных k,a,b,c
:
k + a*X1 + b*X1^2 + c*X1^3 - Y1 = 0,
k + a*X2 + b*X2^2 + c*X2^3 - Y2 = 0,
k + a*X3 + b*X3^2 + c*X3^3 - Y3 = 0,
k + a*X4 + b*X4^2 + c*X4^3 - Y4 = 0
* Поскольку Y(X) = 0 + ax bx^2 + cx^3 + ϵ
неявно включает в себя [0, 0] точку какодна из точек выборки создаст плохие приближения для наборов данных, которые не включают [0, 0].Вместо этого я позволил себе решить Y(X) = k + ax bx^2 + cx^3 + ϵ
.
Фактический SQL будет выглядеть так:
select
-- returns 1 row with columns labeled K, A, B and C = coefficients in 3rd order polynomial equation for the 4 sample points
-(X1*(X2p2*(X3p3*Y4-X4p3*Y3)+X2p3*(X4p2*Y3-X3p2*Y4)+(X3p2*X4p3-X3p3*X4p2)*Y2)+X1p2*(X2*(X4p3*Y3-X3p3*Y4)+X2p3*(X3*Y4-X4*Y3)+(X3p3*X4-X3*X4p3)*Y2)+X1p3*(X2*(X3p2*Y4-X4p2*Y3)+X2p2*(X4*Y3-X3*Y4)+(X3*X4p2-X3p2*X4)*Y2)+(X2*(X3p3*X4p2-X3p2*X4p3)+X2p2*(X3*X4p3-X3p3*X4)+X2p3*(X3p2*X4-X3*X4p2))*Y1)/(X1*(X2p2*(X4p3-X3p3)-X3p2*X4p3+X3p3*X4p2+X2p3*(X3p2-X4p2))+X2*(X3p2*X4p3-X3p3*X4p2)+X1p2*(X3*X4p3+X2*(X3p3-X4p3)+X2p3*(X4-X3)-X3p3*X4)+X2p2*(X3p3*X4-X3*X4p3)+X1p3*(X2*(X4p2-X3p2)-X3*X4p2+X3p2*X4+X2p2*(X3-X4))+X2p3*(X3*X4p2-X3p2*X4)) as k,
(X1p2*(X2p3*(Y4-Y3)-X3p3*Y4+X4p3*Y3+(X3p3-X4p3)*Y2)+X2p2*(X3p3*Y4-X4p3*Y3)+X1p3*(X3p2*Y4+X2p2*(Y3-Y4)-X4p2*Y3+(X4p2-X3p2)*Y2)+X2p3*(X4p2*Y3-X3p2*Y4)+(X3p2*X4p3-X3p3*X4p2)*Y2+(X2p2*(X4p3-X3p3)-X3p2*X4p3+X3p3*X4p2+X2p3*(X3p2-X4p2))*Y1)/(X1*(X2p2*(X4p3-X3p3)-X3p2*X4p3+X3p3*X4p2+X2p3*(X3p2-X4p2))+X2*(X3p2*X4p3-X3p3*X4p2)+X1p2*(X3*X4p3+X2*(X3p3-X4p3)+X2p3*(X4-X3)-X3p3*X4)+X2p2*(X3p3*X4-X3*X4p3)+X1p3*(X2*(X4p2-X3p2)-X3*X4p2+X3p2*X4+X2p2*(X3-X4))+X2p3*(X3*X4p2-X3p2*X4)) as a,
-(X1*(X2p3*(Y4-Y3)-X3p3*Y4+X4p3*Y3+(X3p3-X4p3)*Y2)+X2*(X3p3*Y4-X4p3*Y3)+X1p3*(X3*Y4+X2*(Y3-Y4)-X4*Y3+(X4-X3)*Y2)+X2p3*(X4*Y3-X3*Y4)+(X3*X4p3-X3p3*X4)*Y2+(X2*(X4p3-X3p3)-X3*X4p3+X3p3*X4+X2p3*(X3-X4))*Y1)/(X1*(X2p2*(X4p3-X3p3)-X3p2*X4p3+X3p3*X4p2+X2p3*(X3p2-X4p2))+X2*(X3p2*X4p3-X3p3*X4p2)+X1p2*(X3*X4p3+X2*(X3p3-X4p3)+X2p3*(X4-X3)-X3p3*X4)+X2p2*(X3p3*X4-X3*X4p3)+X1p3*(X2*(X4p2-X3p2)-X3*X4p2+X3p2*X4+X2p2*(X3-X4))+X2p3*(X3*X4p2-X3p2*X4)) as b,
(X1*(X2p2*(Y4-Y3)-X3p2*Y4+X4p2*Y3+(X3p2-X4p2)*Y2)+X2*(X3p2*Y4-X4p2*Y3)+X1p2*(X3*Y4+X2*(Y3-Y4)-X4*Y3+(X4-X3)*Y2)+X2p2*(X4*Y3-X3*Y4)+(X3*X4p2-X3p2*X4)*Y2+(X2*(X4p2-X3p2)-X3*X4p2+X3p2*X4+X2p2*(X3-X4))*Y1)/(X1*(X2p2*(X4p3-X3p3)-X3p2*X4p3+X3p3*X4p2+X2p3*(X3p2-X4p2))+X2*(X3p2*X4p3-X3p3*X4p2)+X1p2*(X3*X4p3+X2*(X3p3-X4p3)+X2p3*(X4-X3)-X3p3*X4)+X2p2*(X3p3*X4-X3*X4p3)+X1p3*(X2*(X4p2-X3p2)-X3*X4p2+X3p2*X4+X2p2*(X3-X4))+X2p3*(X3*X4p2-X3p2*X4)) as c
from (select
samples.*,
-- precomputing the powers should give better performance (at least i hope it would)
power(X1,2) X1p2, power(X2,2) X2p2, power(X3,2) X3p2, power(X4,2) X4p2,
power(Y1,3) Y1p3, power(Y2,3) Y2p3, power(Y3,3) Y3p3, power(Y4,3) Y4p3
from (select
avg(case when sector = 1 then x end) X1,
avg(case when sector = 2 then x end) X2,
avg(case when sector = 3 then x end) X3,
avg(case when sector = 4 then x end) X4,
avg(case when sector = 1 then y end) Y1,
avg(case when sector = 2 then y end) Y2,
avg(case when sector = 3 then y end) Y3,
avg(case when sector = 4 then y end) Y4
from (select x, y,
-- splitting to sectors 1 - 4 by row number (SQL Server version)
ceiling(row_number() OVER (ORDER BY x asc) / count(*) * 4) sector
from original_data
)
) samples
)
Согласно developer.mimer.com, эти дополнительные функции должны быть включены в SQL Server:
T611, "Elementary OLAP operations"
F591, "Derived tables"