Это Θ(n!⋅4ⁿ)
и потому что Θ
является нижней границей для O
, это также O(n!⋅4ⁿ)
Также это Ω(n!⋅4ⁿ)
.
Просто важно то, что вы делаете в своих шагах?Если каждый шаг равен O (1), это обозначение выполняется, но в других случаях это зависит от ваших шагов, я предлагаю показать нам вашу функцию, чтобы увидеть, что шаги.
И почему вы не можете сказать, что этоO(n!)
?потому что вы не можете найти постоянную c
такую, что:
n! ⋅4ⁿ ≤ c⋅n !, для n> n 0
потому что для любой константы c
, когда 4ⁿ > c
(например, когда n ≥ c
) выше неравенства, неверно.